@zhangyy
2018-04-11T13:18:28.000000Z
字数 1872
阅读 142
hive的部分
- Hive 能做什么,与mapreduce 相比优势在哪里(相对于开发)
- 为什么说Hive 是Hadoop 的数据仓库,从【数据存储和分析】 方面理解
- Hive 架构,分为三个部门来理解,画图理解
1.1.hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 相对于mapreduce 离线计算需要写很多java代码去实现数据提取,hive可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用开发程序,更适合数据仓库的统计分析。
2.1. Hive是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。**可以将SQL 查询转换为MapReduce 的job 在Hadoop集群上执行。**
2.2 Hive 没有专门的数据存储格式,也没有为数据建立索引,用户可以非常自由的组织 Hive 中的表,只需要在创建表的时候告诉 Hive 数据中的列分隔符和行分隔符,Hive 就可以解析数据.Hive 中所有的数据都存储在 HDFS 中,Hive 中包含以下数据模型:**表(Table),外部表(External Table),分区(Partition),桶(Bucket)。**
2.3 Hive 中的 Table 和数据库中的 Table 在概念上是类似的,每一个 Table 在 Hive 中都有一个相应的目录存储数据。例如,一个表 pvs,它在 HDFS 中的路径为:/wh/pvs,其中,wh 是**在 hive-site.xml 中由 ${hive.metastore.warehouse.dir} 指定的数据仓库的目录**,所有的 Table 数据(不包括 External Table)都保存在这个目录中。
Partition 对应于数据库中的 Partition 列的密集索引,但是 Hive 中 Partition 的组织方式和数据库中的很不相同。在 Hive 中,表中的一个 Partition 对应于表下的一个目录,**所有的 Partition 的数据都存储在对应的目录中**。例如:pvs 表中包含 ds 和 city 两个 Partition,则对应于 ds = 20090801, ctry = US 的 HDFS 子目录为:/wh/pvs/ds=20090801/ctry=US;对应于 ds = 20090801, ctry = CA 的 HDFS 子目录为;/wh/pvs/ds=20090801/ctry=CA
**Buckets 对指定列计算 hash,根据 hash 值切分数据,目的是为了并行,每一个 Bucket 对应一个文件。**将 user 列分散至 32 个 bucket,首先对 user 列的值计算 hash,对应 hash 值为 0 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00000;hash 值为 20 的 HDFS 目录为:/wh/pvs/ds=20090801/ctry=US/part-00020
### 3.1 用户接口
用户接口主要有三个:CLI,Client 和 WUI。其中最常用的是 CLI,Cli 启动的时候,会同时启动一个 Hive 副本。Client 是 Hive 的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出 Hive Server 所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。
### 3.2 元数据存储
Hive 将元数据存储在数据库中,如 mysql、derby。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
### 3.3 解释器、编译器、优化器、执行器
解释器、编译器、优化器完成 HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在 HDFS 中,并在随后由 MapReduce 调用执行。