@zhangyy
2020-01-16T06:06:41.000000Z
字数 3030
阅读 337
运维系列
- 一:系统环境初始化与系统包准备
- 二:安装测试步骤
apt-get updateapt-get install vim openssh-server
准备系统所需要的安装包NVIDIA-Linux-x86_64-440.44.runcuda_10.2.89_440.33.01_linux.run

1. 到官网上下载自己GPU对应版本的显卡驱动。下载地址:https://www.nvidia.cn/Download/index.aspx?lang=cn选择你的显卡驱动版本 点击搜索下载即可


屏蔽自带的显卡驱动1) vim /etc/modprobe.d/blacklist.conf2) 在最后一行加上:blacklist nouveau ,这里是将Ubuntu自带的显卡驱动加入黑名单3) 在终端输入:update-initramfs –u,使修改生效4 ) 从新启动系统: reboot5)打开终端输入lsmod | grep nouveau,没有输出,则屏蔽成功6 ) service lightdm stop




安装 NVIDIA-Linux-x86_64-440.44.run./NVIDIA-Linux-x86_64-440.44.run





1. 下载CUDA下载地址:https://developer.nvidia.com/cuda-downloadscuda_10.2.89_440.33.01_linux.run./cuda_10.2.89_440.33.01_linux.run




配置环境变量vim /etc/profile----到最后加上export PATH=/usr/local/cuda/bin:$PATHexport LD_LIBRARY_PATH=/usr/local/cuda/lib64:$PATH----source /etc/profile


测试是否安装成功cd /usr/local/cuda/samples/1_Utilities/deviceQuerymake./deviceQuery


1. 下载网址:https://developer.nvidia.com/rdp/cudnn-download需要自己注册用户名与密码登录 才能下载cudnn-10.2-linux-x64-v7.6.5.32.tgz测试所需包

tar -zxvf cudnn-10.2-linux-x64-v7.6.5.32.tgzcd cuda/cp include/cudnn.h /usr/local/cuda/include/cp lib64/lib* /usr/local/cuda/lib64/sudo chmod a+r /usr/local/cuda/include/cudnn.hsudo chmod a+r /usr/local/cuda/lib64/libcudnn*


验证是否安装成功网址:https://developer.nvidia.com/rdp/cudnn-download下载libcudnn7_7.6.5.32-1+cuda10.2_amd64.deblibcudnn7-dev_7.6.5.32-1+cuda10.2_amd64.deb

cd /usr/local/cuda/lib64/sudo rm -rf libcudnn.so libcudnn.so.7sudo ln -s libcudnn.so.7.0.5 libcudnn.so.7sudo ln -s libcudnn.so.7 libcudnn.sosudo ldconfig

dpkg -i libcudnn7_7.6.5.32-1+cuda10.2_amd64.debdpkg -i libcudnn7-dev_7.6.5.32-1+cuda10.2_amd64.debdpkg -i libcudnn7-doc_7.6.5.32-1+cuda10.2_amd64.deb


cp -r /usr/src/cudnn_samples_v7/ /home/el/cd /home/el/cudnn_samples_v7/mnistCUDNNmake clean && make./mnistCUDNN



Anaconda3-2019.10-Linux-x86_64.shchmod +x Anaconda3-2019.10-Linux-x86_64.shvim /etc/profile------增加export PATH=/opt/anaconda3/bin:$PATH------conda -V



1. 下载网址:https://pypi.org/project/opencv-python/#files因为安装的python是3.7的,所以opencv名字中要是"cp37"的。想要安装opencv3,所以名字中要为opencv_python-3.****我的系统是linux 64位的的,所以名字要是***linux1_x86_64**软件:opencv_python-4.1.2.30-cp37-cp37m-manylinux1_x86_64.whlpip install opencv_python-4.1.2.30-cp37-cp37m-manylinux1_x86_64.whlconda list |grep opencv


apt-get install cmakecmake --version


在Ubuntu16.04默认安装的cmake版本为3.5.x,可通过一下命令,查看版本。cmake --version有时需要安装高版本的cmake。1.卸载旧版本apt-get autoremove cmake2.以安装3.12.3版本为例$ sudo apt-get install build-essential$ wget http://www.cmake.org/files/v3.12/cmake-3.12.3.tar.gz3.解压、安装$ tar xf cmake-3.12.3.tar.gz$ cd cmake-3.11.3$ ./configure$ make$ sudo make install4.解决路径问题export PATH=/usr/local/bin:$PATHexport LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATHcmake5.查看,安装成功cmake --version

1. 下载源代码apt-get install gitgit clone --recursive https://github.com/dmlc/xgboost2. 编译GPU共享库cd xgboostmkdir buildcd buildcmake .. -DUSE_CUDA=ONmake -j3. 安装Python包在xgboost根目录下cd python-packagesudo python3 setup.py install测试GPU加速python3 tests/benchmark/benchmark.py



