偶极聚电解质刷
research
Counterion adsorption on tethered polyelectrolyte chain
References:
THE JOURNAL OF CHEMICAL PHYSICS 2007, 126, 244902
J. Phys. Chem. B 2009, 113, 11076–11084
THE JOURNAL OF CHEMICAL PHYSICS 2012, 136, 234901
The derivation follows ''J. Phys. Chem. B'' 2009, 113, 11076–11084
Partition function
Z=1nP!∏m∑nm=0∞∏k=1nP∫DRk(s)∏k=1nm∫Drmk∏k=1nC∫DrCk∏k=1nD∫DrDk∫Dψexp(−H)×∏rδ(∑jvjρ^j(r)−1)∏rδ(f^(r)ρ^P(r)+g^(r)ρ^P(r)−ρ^P(r))×δ(∫drρ^e(r))×∏k=1nC∑i=1nP∫NP0dsδ(rCk−Ri(s))∏k=1nD∑i=1nP∫NP0dsδ(rDk−Ri(s))
Hamiltonian
H=Hela+Hint+Hele+Hchem
Elastic term
Hela=∑k=1nP∫NP0ds32b2(∂Ri(s)∂s)2
Flory-Huggins term
Hint=∫drV0χρ^P(r)ρ^S(r)
Elactrostatic interaction
Hele=∫dr(ρ^e(r)ψ(r)−18πlB|∇ψ(r)|2+∫duρ^D(r,u)pu⋅∇ψ(r))
charge density operator
ρ^e(r)=f^(r)ρ^P(r)+∑mzmρ^m(r)
dipole density operator
ρ^D(r)=∫duρ^D(r,u)=g^(r)ρ^P(r)
Hchem=∫dr(μCf^(r)ρ^P(r)+μDg^(r)ρ^P(r)+μ+ρ^+(r)+μ−ρ^−(r)+μSρ^S(r))
microscopic density operator
ρ^P(r)=∑k=1nP∫NP0dsδ(r−Ri(s))
ρ^m(r)=∑k=1nmδ(r−rmi)
charge fraction operator
f^(r)=∑nCk=1δ(r−rCk)∑nPi=1∫NP0dsδ(r−Ri(s))
dipole operator
g^(r,u)=∑nDk=1δ(r−rDk)δ(u−uDk)∑nPi=1∫NP0dsδ(r−Ri(s))
Inserting identities
∏j∫Dωj(r)∫Dρj(r)exp(∫dr)ωj(r)(ρj(r)−ρ^j(r))=1
∫DγC(r)∫Df(r)exp(∫drγC(r)(f(r)ρP(r)−f^(r)ρ^P(r)))=1
∫DγD(r,u)∫Dg(r,u)exp(∫drduγD(r,u)(g(r,u)ρP(r)−g^(r,u)ρ^P(r)))=1
∏rδ(∑jvjρ^j(r)−1)=∫Dη(r)exp(−∫drη(r)(δ(∑jvjρ^j(r)−1)))
∏rδ(f^(r)ρ^P(r)+g^(r)ρ^P(r)−ρ^P(r))=∫Dα(r)exp(−∫drα(r)(f^(r)ρ^P(r)+g^(r)ρ^P(r)−ρ^P(r)))
δ(∫drρ^e(r))=∫dλexp(−λ∫drρ^e(r))
Then the partition function
Z=∏j∫Dωj∫Dρj∫Dψ∫Dη∫Dα∫Df∫Dg∫γC∫γD∫dλexp(−F)
F=∫dr⎡⎣−∑jωj(r)ρj(r)+V0χρP(r)ρS(r)−η(r)+η(r)∑jvjρj(r)−(γC(r)f(r)+γD(r,u)g(r,u))ρP(r)+α(r)ρP(r)(f(r)+g(r)−1)−18πlB|∇ψ(r)|2+ψ(r)(zPf(r)ρP(r)+∑ionzionρion(r))+∫dug(r,u)ρP(r)pu⋅∇ψ(r)⎤⎦−nPln(QPnP)−∑ionQion−QS−QC−QD
species partition function
QP=∫DR(s)exp(−∫NP0ds(32b2(∂R(s)∂s)2+ωP(R(s))))∫DR(s)exp(−∫NP0ds(32b2(∂R(s)∂s)2))
QS=exp(−μS)V∫drexp(−ωS(r))
Qion=exp(−μion−zionλ)V∫drexp(−ωion(r))
QC=exp(−μC+λ)V∫drexp(−γC(r))ρP(r)
QD=exp(−μD)V∫drduexp(−γD(r,u))ρP(r)
SCF equations:
ωP(r)=V0χρS(r)+vPη(r)−α(r)
ωS(r)=V0χρP(r)+vSη(r)
ωion(r)=zionψ(r)
ρP(r)=nPQP∫NP0q(r,s)qdeg(r,s)
ρS(r)=exp(μS)Vexp(−ωS(r))
ρion(r)=exp(μion−zionλ)Vexp(−ωion(r))
γC(r)=zPψ(r)+α(r)
γD(r,u)=pu⋅∇ψ(r)+4πα(r)
f(r)=exp(−μC−zPλ)Vexp(−γC(r))
g(r,u)=exp(−μD)Vexp(−γD(r,u))
∇2ψ(r)=−4πlB[∑ionzionρion+∇⋅P]
P=∫dug(r,u)ρP(r)pu
useful integral:
14π∫duexp(−pu⋅∇ψ(r))=sinh(p|∇ψ(r)|)p|∇ψ(r)|
14π∫duexp(−pu⋅∇ψ(r))pu=ψ(r))|∇ψ(r)|sinh(p|∇ψ(r)|)p|∇ψ(r)|L(p|∇ψ(r)|)
where
L(x) is Langevin function
L(x)=coth(x)−1/x