@Rays
2019-03-01T22:55:31.000000Z
字数 6328
阅读 1561
未分类
摘要: NewSQL是一种新方式关系数据库,意在整合RDBMS所提供的ACID事务特性,及NoSQL提供的横向可扩展性。本文通过对VoltDB、TiDB、Cosmos DB、Citus、Vitess等NewSQL数据库的介绍,给出了NewSQL的独到考虑。
作者: Gokhan Simsek
正文:
对大多数开发人员而言,SQL以及MySQL、PostgreSQL等关系数据库管理系统(即RDBMS)并不陌生。RDBMS的基本架构原则已历经了数十年的发展。而MongoDB、Cassandra等NoSQL解决方案,则是在本世纪初为满足数据分布可扩展的需求而提出的。
但是最近几年我们看到,出现了一个称为NewSQL的新方向。
NewSQL是一种新方式关系数据库,意在整合RDBMS所提供的ACID事务特性(即原子性、一致性、隔离性和可持久性),以及NoSQL提供的横向可扩展性。听上去NewSQL应该汲取了这两个方向各自的长处,像是一种完美的解决方案。那它为什么时至今日方得以推出呢?
数据库的推出,源自于上世纪六十年代分离代码与数据的需求。数据库的最初设计基于如下考虑:
在当时,开发人员需要通过终端输入交互式查询。鉴于开发人员是唯一能访问数据库的用户,上面的考虑是有意义,且有价值的。正确性和一致性曾是户最为看重的两个度量,但是时至今日人们更看重的是性能和可用性。由此,纵向扩展可用于解决不断增加的数据需求,以及考虑在数据库迁移或恢复时需移动数据的情况下的可承受宕机时间。
下面快进数十年进入当前的互联网和云时代,数据库的需求已大为不同。数据的规模是海量的,而商业硬件比起上世纪要更为便宜。
随着数据规模的增长,以及基于互联网的实时交互无处不在,用户对数据库的基本需求呈现出两个主要的类别,即OLAP(在线分析处理)和OLTP(在线交易处理)。
OLAP数据库通常称为数据仓库。它们用于存储供商业智能业务统计和分析历史记录。OLAP数据库侧重于只读工作负载,其中包括用于批处理的即席查询。OLAP数据库的查询用户数相对较少,通常情况下只有企业员工可以访问历史记录。
OLTP数据库用于高度并发的事务数据处理场景,该场景的特点是实时用户提交预定义的短时查询。事务处理的一个简单例子,就是普通用户在电子商务网站上搜索并购买商品。相对于OLAP用户,尽管OLTP用户访问的数据集规模很小,但是用户的数量要庞大很多,并且查询中可以包括读操作和写操作。OLTP数据库主要考虑的是高可用性、并发性和性能。
在大多数Web站点上,任一时刻都可能会有成百上千的用户并发执行有效的查询。考虑到这样的规模,系统必须具备高可用性,因为每宕机一分钟,都可能会导致企业损失数千甚至上百万美元。
Web站点上用户提交的查询是预定义的,因为用户无法访问数据库终端并执行任意查询。查询是存在于应用逻辑中的,这使得我们可以针对高性能做优化。
可扩展性是这一新数据库生态系统中的一个重要度量,而高可用性则对企业的盈利至关重要。NoSQL数据库给出了一种易于实现可扩展性和更好性能的解决方案,解决了CAP理论中的A(可用性)和P(分区容错性)上的设计考虑。但这意味着,在很多NoSQL设计中实现为最终一致性,摈弃了RDBMS提供的强一致性及事务的ACID属性。
NoSQL数据库使用了不同于关系模型的模型,例如键值模型、文档模型、宽列模型和图模型等。采用这些模型的NoSQL数据库并不提供规范化,本身在设计上是无模式的。大多数NoSQL数据库支持自动分区,无需开发人员干预即可轻松实现水平扩展。
NoSQL适用于可接受最终一致性的部分应用,例如社交媒体。用户并不关注看到的是否为不一致的数据库视图,并且考虑到数据的状态更新、发推文等,强一致性也并非必要的。但是,NoSQL数据库不宜用于对一致性要求高的系统,例如电子商务平台。
NewSQL系统的提出,正是为了满足整合NoSQL和RDBMS特性的需求。其中,NoSQL提供了可扩展性和高可用性,传统RDBMS提供了关系模型、ACID事务支持和SQL。用户已不再考虑一招能解决所有问题(one-size-fits-all)的方案,逐渐转向针对OLTP等不同工作负载给出特定数据库。大多数NewSQL数据库做了全新的设计,或是主要聚焦于OLTP,或是采用了OLTP/OLAP的混合架构载的全新设计。
传统的RDBMS架构从一开始设计时并未考虑分布式系统,而是在分布式需求出现后,才考虑在最初的设计之添加支持分布式的设计。由于RDBMS实现了规范化模式,而非NoSQL那样的聚合表单,因此RDBMS中必须引入一些复杂的概念,才能在支持可扩展的同时保持一致性需求。由此,为支持RDBMS中的横向扩展,人们提出了手动分片和主从架构。
但是,RDBMS为实现横向扩展而在性能上做出了很大让步。这是因为连接运算中需要在各个节点间移动数据以实现聚合,运算实现代价增大。另外,数据维护开销变得更为耗时。为保持RDBMS的性能,一些企业推出了复杂的系统和产品。但是当前,人们依然并不认为传统RDBMS本身支持可扩展。
NewSQL数据库为云时代而生,因此它从一开始就考虑了分布式架构。
那么NewSQL解决方案提供了那些独到特性?
相对于可用性而言,NewSQL更重视一致性,即侧重CAP中的C和P。很多NewSQL数据库为提供强一致性而牺牲了部分可用性。这些数据库为达成分布式一致性,在全局系统或本地分区层面使用了Paxos或Raft共识协议。MemSQL等一些解决方案还提供了一致性和可用性之间的权衡调优,支持不同用例的各种配置。
传统RDBMS依赖二级存储(即磁盘)作为数据存储的介质。常用的二级存储包括SSD或HDD。鉴于OLTP工作负载可将历史数据归档到数据仓库中,因此并不需要大量的数据,只需要最新的数据。一些NewSQL解决方案使用内存(RAM)作为存储介质。内存访问要比磁盘访问快很多,具体而言,可比SSD快百倍,比HDD快万倍。
内存解决方案提供了更好的性能提升,因为内存的使用消除或简化了缓存管理和重度并发系统。鉴于内存中保持了全部数据(或是大部分数据),因此完全没有必要做缓存管理。对于并发而言,不同的实现有不同的解决方案,例如序列化等。
那么如何解决持久性问题?RAM本身是非持久介质。一旦掉电,需要持久化的数据就会丢失。内存数据库采用了多种方式解决该问题。常用方法包括组合使用基于磁盘的非频繁备份、保存状态的日志以实现可恢复性,以及对关键数据使用非易失RAM介质。
下面给出内存数据库的两个重要例子,VoltDB和MemSQL。
VoltDB是一种符合ACID特性的内存关系数据库。VoltDB的架构基于Michael Stonebraker等提出的H-Store,一种设计用于OLTP工作负载的内存数据库。
VoltDB关注快速数据,目的是服务于那些必须对大流量数据做快速处理的特定应用,例如贸易应用、在线游戏、物联网传感器等应用场景。为实现高性能,VoltDB基于OLTP原则做了全新的设计。
VoltDB明确以支持存储过程为指导思想,让存储过程更接近于数据,因此VoltDB支持执行序列化事务。为实现序列化事务处理,一个事务会被切分为一些原子事务,然后做序列化,并在队列中依次执行。序列化事务模式消除了管理并发的开销,进而提高了性能。VoltDB还支持即席查询,性能优化可受益于存储过程。这非常适合OLTP工作负载,因为终端用户并不能执行即席查询。
ACID原则中的持久性,对内存数据库是一个重要问题。VoltDB采用多种技术实现持久性,包括快照、命令日志、K-safety机制和数据库复制等。这些方法确保VoltDB实现数据冗余,进而支持数据持久化。
如需进一步了解VoltDB及其架构,可查看我们前期对John Hugg和Ryan Betts访谈的播客。
前文曾提及,很多NewSQL数据库是完全重新设计的。正因为重新设计,一些项目希望实现统一支持事务处理和工作负载分析的数据库。HTAP(混合事务/分析处理,Hybrid Transactional/Analytical Processing)一词由Gartner提出。支持HTAP功能的数据库提供对高级实时分析,进而支持实时业务决策和智能事务处理。VoltDB也提供HTAP能力,它更侧重于事务负载。其他主流HTAP数据库还包括TiDB和Google的Spanner。
TiDB是一款来自中国的开源解决方案,它给出了一种兼容MySQL的HTAP数据库,支持强一致性,并且分布式可扩展。TiDB实现为分层架构,其中TiDB服务器作为无状态计算层出于顶层。底层存储层实现为支持事务的键值数据库,称为TiKV。TiKV的设计受到了Google Spanner的启发。
TiDB层实现监听SQL查询、解析查询并创建执行计划。查询进而将按需切分为各个子查询,并发送给相应的TiKV存储。鉴于TiDB层是无状态的,因此该层易于实现扩展。
TiKV层实现了底层存储层,它是一种使用RocksDB作为物理存储的键值数据库。TikV按区域组织数据,各个区域将被存储和复制。为基于复制模式实现持久性和高可用性,TiKV使用Raft共识算法提供强一致性。TiKV的分布本质提供了对分布式查询的支持。
这一计算层与存储层的分离解耦架构,使得TiDB可同时提供对OLTP和OLAP强大支持。鉴于TiDB同时支持处理OLTP和基本OLAP负载,TiSpark作为一种在TiKV上直接运行Spark SQL的OLAP解决方案,可轻易实现基于TiDB/TiKV架构的运行。TiDB本身就具有代价优化器和分布式执行器,可处理80%的即席OLAP查询。
TiSpark针对复杂OLAP查询做了一些优化。和TiDB层类似,TiSpark也是一种无状态计算层,并与TiKV层交互。TiSpark在设计上就是通过与Spark SQL的交互去处理复杂OLAP查询。
因此,同时部署TiDB和TiSpark可消除ETL的代价,给出一种同时支持分析和事务需求的统一解决方案。
要了解TiDB及其架构的更多信息,可查看我们近期对Kevin Xu关于TiDB的访谈。要进一步了解支持TiKV/TiDB的数据物理存储RockDB,可查看我们对Dhruba Borthakur和Igor Canadi关于RocksDB的访谈。要深入了解TiKV,可查看我们对中国开源项目的报道。
微软的Azure Cosmos DB提供了多种可调优特性,是一种高度灵活的解决方案,可通过调整适合多类用例。我们认为Cosmos DB也是NewSQL数据库。
Cosmos DB是一种分布于全球的多模型数据库服务。作为多模型服务,它的底层存储模型支持键值、列存储、文档和图数据库,并支持通过SQL和NoSQL API提供数据。
就全球分布而言,Cosmos DB在位于全球的多个数据中心保存数据备份,确保了可靠性和高可用性。开发人员可以创建备份,并通过几个基本的API调用实现数据的横向扩展。
Cosmos DB在设计上考虑了降低数据库管理的代价。它无需开发人员操心索引或模式管理,自动维护索引以确保性能。
Cosmos DB提供多个一致性层级,支持开发人员在确定所需的适用SLA上做出权衡。除了两种极端的强一致性情况和最终一致性之外,Cosmos DB还一并提供了另外五个良好定义的一致性层级。每个一致性层级提供单独的SLA,确保达到特定的可用和性能层级。
作为微软这样的技术和云巨头所提供的产品,Cosmos DB易于开发人员使用,对性能、可用性和一致性提供了全面的保证。
NewSQL也可以通过增强现有的RDBMS实现扩展的功能,无需完全重新设计数据库。这样的解决方案实现在经实战验证的SQL数据库之上,增强了现有数据库的功能。该理念对于那些现有系统运行良好而不愿意迁移到新数据库解决方案的大型企业是非常有用的。
一个很好的例子,就是构建于PostgreSQL上的Citus。
Citus由近期被微软并购的Citus Data开发维护。它是一款开源PostgreSQL扩展,通过透明分布式表和查询支持横向扩展,进而支持分布式PostgreSQL。
在Citus集群中,数据库表是分布式的。数据库表被水平分区到不同的工作节点上,在用户看来与常规数据库表并无二致。Citus使用一种维护了数据库表元数据的协调器掌握PostgreSQL节点的工作情况,处理查询,并将查询并行化到适当的表分区。
Citus为PostgreSQL添加了查询路由、分布式表、分布式事务和存储过程等特性,管理了大量的底层细节,进而实现了水平可扩展、高性能的PostgreSQL。
要了解Cirus的更多细节,可查看我们就PostgreSQL扩展对Ozgun Erdogan的访谈,以及就Postgres分片对Marco Slot的访谈。
相对于Citus是基于PostgreSQL构建的,Vitess在设计上考虑对MySQL做出改进,满足MySQL适用于云时代的需求。
Vitess最初是由Youtube在2011年为适应自身扩展需求而构建的。随着用户和数据的增长,Youtube必须要进行水平扩展和分片,由此创建了Vitess解决透明扩展的问题。现在Vitess已经开源,由CNCF管理。Vitess被认可为是一种云原生技术,提供了多处MySQL改进。
首要改进就是引入了多种分片模式。用户可以创建自己的分片模式,Vitess负责依模式组织分片和数据。Vitess也支持自动分片,无需手工运行代码,并支持只读宕机时间最小化的实时重分片。
分片是通过V索引(Vindex)和键空间(keyspace)技术实现的。其中,主V索引(Primary Vindex)类似于数据库索引模式中的主键索引。用户可以指定需要建立主V索引的属性,以及基于V索引的数据分片数量。在对数据库分片后,基于键空间的查询可被导向到相应的分片。
Vitess的架构使用vtgate提供负载均衡和查询路由。vtgate是一种无状态层,可轻易地上下扩展。vtgate将查询路由至为分片提供代理的vtable,并返回聚合结果给vtgates。
当部署到Kubernetes等集群编排工具上时,Vitess依然提供上述优点。由于vtgates是一种无状态代理,因此适合于部署到容器集群上。这时Vitess使用lockserver或etcd作为元数据存储,处理模式定义等管理工作。
Vitess用Go语言实现。利用Go对并发的良好支持,它支持对数千连接的处理。
要了解Vitess的发展历程、架构和用例,可收听我们就Vitess对Sugu Sougoumarane深度访谈的播客。
NewSQL生态系统正在持续增长和演进。我们无法给出一个能描述全部NewSQL数据库的通用定义,或是提出一些通用的特征。但是在NewSQL概念下提出的多种数据库设计,为开发人员提供了针对不同用例的多种选项。人们不再寄希望于给出适用于所有用例的单一架构,NewSQL推动了创新和专业数据库设计的发展。
Gokhan是一名计算机科学研究生,目前就读于埃因霍温技术大学数据科学专业。他的兴趣包括大数据、NLP和机器学习。
查看英文原文: What Is New About NewSQL?