@iStarLee
2019-08-30T00:02:46.000000Z
字数 7643
阅读 490
SLAM
In this simulation, the robot has a state vector includes 4 states at time .
x, y are a 2D x-y position, is orientation, and v is velocity. In the code, "xEst" means the state vector. And, is covariace matrix of the state, is covariance matrix of process noise, is covariance matrix of observation noise at time . The robot has a speed sensor and a gyro sensor. So, the input vecor can be used as each time step
The robot model is
is a time interval.
Its Jacobian matrix is
The robot can get x-y position infomation from GPS. So GPS Observation model is
Localization process using Extendted Kalman Filter is
The robot is running at linear speed 1.0 m/s, twist speed is 0.1 rad/s. There are four already known landmark, which are located at (10,-2),(15,10),(3,15),(-5,20). The motion model noise and observation noise are gaussian noise, the mean is 0, the covariance is [0,1].
In our EKF simulation system, we show the three kind of line results.
"""
Extended Kalman Filter SLAM example
author: Atsushi Sakai (@Atsushi_twi)
"""
import math
import numpy as np
import matplotlib.pyplot as plt
# EKF state covariance
Cx = np.diag([0.5, 0.5, np.deg2rad(30.0)])**2
# Simulation parameter
Qsim = np.diag([0.2, np.deg2rad(1.0)])**2
Rsim = np.diag([1.0, np.deg2rad(10.0)])**2
DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
MAX_RANGE = 20.0 # maximum observation range
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
STATE_SIZE = 3 # State size [x,y,yaw]
LM_SIZE = 2 # LM state size [x,y]
show_animation = True
def ekf_slam(xEst, PEst, u, z):
# Predict
S = STATE_SIZE
xEst[0:S] = motion_model(xEst[0:S], u)
G, Fx = jacob_motion(xEst[0:S], u)
PEst[0:S, 0:S] = G.T * PEst[0:S, 0:S] * G + Fx.T * Cx * Fx
initP = np.eye(2)
# Update
for iz in range(len(z[:, 0])): # for each observation
minid = search_correspond_LM_ID(xEst, PEst, z[iz, 0:2])
nLM = calc_n_LM(xEst)
if minid == nLM:
print("New LM")
# Extend state and covariance matrix
xAug = np.vstack((xEst, calc_LM_Pos(xEst, z[iz, :])))
PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),
np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))
xEst = xAug
PEst = PAug
lm = get_LM_Pos_from_state(xEst, minid)
y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], minid)
K = (PEst @ H.T) @ np.linalg.inv(S)
xEst = xEst + (K @ y)
PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst
xEst[2] = pi_2_pi(xEst[2])
return xEst, PEst
def calc_input():
v = 1.0 # [m/s]
yawrate = 0.1 # [rad/s]
u = np.array([[v, yawrate]]).T
return u
def observation(xTrue, xd, u, RFID):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = np.zeros((0, 3))
for i in range(len(RFID[:, 0])):
dx = RFID[i, 0] - xTrue[0, 0]
dy = RFID[i, 1] - xTrue[1, 0]
d = math.sqrt(dx**2 + dy**2)
angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])
if d <= MAX_RANGE:
dn = d + np.random.randn() * Qsim[0, 0] # add noise
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
zi = np.array([dn, anglen, i])
z = np.vstack((z, zi))
# add noise to input
ud = np.array([[
u[0, 0] + np.random.randn() * Rsim[0, 0],
u[1, 0] + np.random.randn() * Rsim[1, 1]]]).T
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
def motion_model(x, u):
F = np.array([[1.0, 0, 0],
[0, 1.0, 0],
[0, 0, 1.0]])
B = np.array([[DT * math.cos(x[2, 0]), 0],
[DT * math.sin(x[2, 0]), 0],
[0.0, DT]])
x = (F @ x) + (B @ u)
return x
def calc_n_LM(x):
n = int((len(x) - STATE_SIZE) / LM_SIZE)
return n
def jacob_motion(x, u):
Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(
(STATE_SIZE, LM_SIZE * calc_n_LM(x)))))
jF = np.array([[0.0, 0.0, -DT * u[0] * math.sin(x[2, 0])],
[0.0, 0.0, DT * u[0] * math.cos(x[2, 0])],
[0.0, 0.0, 0.0]])
G = np.eye(STATE_SIZE) + Fx.T * jF * Fx
return G, Fx,
def calc_LM_Pos(x, z):
zp = np.zeros((2, 1))
zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])
zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])
#zp[0, 0] = x[0, 0] + z[0, 0] * math.cos(x[2, 0] + z[0, 1])
#zp[1, 0] = x[1, 0] + z[0, 0] * math.sin(x[2, 0] + z[0, 1])
return zp
def get_LM_Pos_from_state(x, ind):
lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]
return lm
def search_correspond_LM_ID(xAug, PAug, zi):
"""
Landmark association with Mahalanobis distance
"""
nLM = calc_n_LM(xAug)
mdist = []
for i in range(nLM):
lm = get_LM_Pos_from_state(xAug, i)
y, S, H = calc_innovation(lm, xAug, PAug, zi, i)
mdist.append(y.T @ np.linalg.inv(S) @ y)
mdist.append(M_DIST_TH) # new landmark
minid = mdist.index(min(mdist))
return minid
def calc_innovation(lm, xEst, PEst, z, LMid):
delta = lm - xEst[0:2]
q = (delta.T @ delta)[0, 0]
zangle = math.atan2(delta[1, 0], delta[0, 0]) - xEst[2, 0]
zp = np.array([[math.sqrt(q), pi_2_pi(zangle)]])
y = (z - zp).T
y[1] = pi_2_pi(y[1])
H = jacobH(q, delta, xEst, LMid + 1)
S = H @ PEst @ H.T + Cx[0:2, 0:2]
return y, S, H
def jacobH(q, delta, x, i):
sq = math.sqrt(q)
G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],
[delta[1, 0], - delta[0, 0], - 1.0, - delta[1, 0], delta[0, 0]]])
G = G / q
nLM = calc_n_LM(x)
F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))
F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),
np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))
F = np.vstack((F1, F2))
H = G @ F
return H
def pi_2_pi(angle):
return (angle + math.pi) % (2 * math.pi) - math.pi
def main():
print(__file__ + " start!!")
time = 0.0
# RFID positions [x, y]
RFID = np.array([[10.0, -2.0],
[15.0, 10.0],
[3.0, 15.0],
[-5.0, 20.0]])
# State Vector [x y yaw v]'
xEst = np.zeros((STATE_SIZE, 1))
xTrue = np.zeros((STATE_SIZE, 1))
PEst = np.eye(STATE_SIZE)
xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
while SIM_TIME >= time:
time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)
xEst, PEst = ekf_slam(xEst, PEst, ud, z)
x_state = xEst[0:STATE_SIZE]
# store data history
hxEst = np.hstack((hxEst, x_state))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
if show_animation: # pragma: no cover
plt.cla()
plt.plot(RFID[:, 0], RFID[:, 1], "*b", lw='3')
plt.plot(xEst[0], xEst[1], ".r")
# plot landmark
for i in range(calc_n_LM(xEst)):
plt.plot(xEst[STATE_SIZE + i * 2],
xEst[STATE_SIZE + i * 2 + 1], "xg")
gt,=plt.plot(hxTrue[0, :],
hxTrue[1, :], "-g")
dr,=plt.plot(hxDR[0, :],
hxDR[1, :], "-k")
est,=plt.plot(hxEst[0, :],
hxEst[1, :], "-r")
plt.axis("equal")
plt.xlabel('x/m')
plt.ylabel('y/m')
plt.grid(True)
plt.legend([gt,dr,est],['Ground True','Dead Reckoning', 'EKF SLAM Estimation'],loc='best')
plt.pause(0.001)
if __name__ == '__main__':
main()