@Chilling
2017-02-18T07:42:09.000000Z
字数 2751
阅读 1234
LCA
Description
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)
Input
The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.
For each test case:
Output
For each "DIST" or "KTH" operation, write one integer representing its result.
Print one blank line after each test.
Example
Input
1
6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE
Output
5
3
题意: t组数据,给出一个无向图,DIST询问两点之间的距离,KTH询问两点之间的第k个点,DONE结束。
分析: 两点在图上的距离,连线一定经过他们的最近公共祖先(LCA),因此两点之间的距离即为
dis[u]+dis[v]-2*dis[LCA(u,v)];
找u,v之间的第k个点,首先要知道该点是在LCA(u,v)的左边还是右边,然后以u点或者v点向上倍增得到第k个点。
为什么不以LCA(u,v)向下找?向下可能会遇到很多分支,而以一点向上找只有一条路径。
#include<stdio.h>#include<vector>#include<algorithm>#include<string.h>#define maxn 10005using namespace std;int n;int dep[maxn]; //深度int dis[maxn];int fa[maxn][15];//2^14>10000,各点向上跳2^i到达的点struct node{int en,val;node(int enn=0,int vall=0){en=enn;val=vall;}};vector<node> V[maxn];void clr(){memset(dep,0,sizeof(dep));memset(dis,0,sizeof(dis));memset(fa,0,sizeof(fa));for(int i=0;i<=n;i++)V[i].clear();}void dfs(int u,int f,int d)//深度{fa[u][0]=f;for(int i=1;i<15;i++)fa[u][i]=fa[fa[u][i-1]][i-1];dep[u]=d;for(int i=0;i<V[u].size();i++){node v=V[u][i];if(v.en==f) continue;dis[v.en]=dis[u]+v.val;dfs(v.en,u,d+1);}}int LCA(int u,int v){if(dep[u]>dep[v])swap(u,v); //u浅v深for(int i=0;i<15;i++) //使等深度if((dep[v]-dep[u])>>i&1)v=fa[v][i];if(u==v) return u;for(int i=14;i>=0;i--) //同时向上跳{if(fa[u][i]!=fa[v][i]){u=fa[u][i];v=fa[v][i];}}return fa[u][0];}int kth(int u,int v,int k){int ans;int lca=LCA(u,v);int cnt=dep[u]+dep[v]-2*dep[lca]+1; //u到v数字个数if(dep[u]-dep[lca]+1==k)return lca;else if(dep[u]-dep[lca]+1<k)//在lca右边{k=cnt-k;//跳的步数u=v;}else k--;//左边for(int i=0;i<15;i++)if(k&(1<<i))u=fa[u][i];return u;}int main(){int t;int a,b,c;char s[9];scanf("%d",&t);while(t--){clr();scanf("%d",&n);for(int i=1;i<n;i++){scanf("%d%d%d",&a,&b,&c);V[a].push_back(node(b,c));V[b].push_back(node(a,c));}dfs(1,0,1);while(1){scanf("%s",s);if(s[1]=='I'){scanf("%d%d",&a,&b);printf("%d\n",dis[a]+dis[b]-2*dis[LCA(a,b)]);}else if(s[1]=='T'){int ans;scanf("%d%d%d",&a,&b,&c);printf("%d\n",kth(a,b,c));}else break;}}return 0;}