@Chilling
2017-02-16T17:58:19.000000Z
字数 2128
阅读 898
线段树
Problem Description
The inversion number of a given number sequence is the number of pairs that satisfy i < j and .
For a given sequence of numbers , if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
(where m = 0 - the initial seqence)
(where m = 1)
(where m = 2)
...
(where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
题意:输入n个数,然后按照题目要求交换这n个数的位置,求最小的逆序数是多少。
交换的法则,m从0到n-1变化,每次将第一个数拿到最后,如下:
...
求在这n个序列中逆序数最小是多少。
分析:先用线段树求出最初的逆序数,(也可以归并求出),再循环n-1次,逆序数有这么一个规律:
原来的逆序数是ans,把a[0]移到最后之后,减少逆序数a[0],同时增加逆序数n-a[0]-1个,总的变化ans-a[0]+n-a[0]-1。
因此每次的逆序数ans=ans-a[i]+n-a[i]-1
,求出最小的即可。
#include<stdio.h>
#include<algorithm>
#define maxn 5005
using namespace std;
int a[maxn];
struct node
{
int l,r,sum;
}s[4*maxn];
void build(int id,int l,int r)
{
s[id].l=l;
s[id].r=r;
if(l==r)
s[id].sum=0;
else
{
int mid=(l+r)/2;
build(id*2,l,mid);
build(id*2+1,mid+1,r);
s[id].sum=0;
}
}
void rep(int id,int x,int y)//y=1
{
if(s[id].l==s[id].r)
s[id].sum=y;
else
{
int mid=(s[id].l+s[id].r)/2;
if(x<=mid)
rep(id*2,x,y);
else
rep(id*2+1,x,y);
s[id].sum=s[id*2].sum+s[id*2+1].sum;
}
}
int sum(int id,int l,int r)
{
if(l<=s[id].l&&s[id].r<=r)
return s[id].sum;
else
{
int mid=(s[id].l+s[id].r)/2;
if(r<=mid)
return sum(id*2,l,r);
else if(l>mid)
return sum(id*2+1,l,r);
else
return sum(id*2,l,r)+sum(id*2+1,l,r);
}
}
int main()
{
int n,ss,ans;
while(scanf("%d",&n)!=EOF)
{
ss=0;
build(1,0,n-1);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
ss+=sum(1,a[i],n-1);
rep(1,a[i],1);
}
ans=ss;//初始的逆序数
// printf("%d\n",ans);
for(int i=0;i<n;i++)
{
ans=min(ans,ss-a[i]+n-a[i]-1);
ss=ss-a[i]+n-a[i]-1;
}
printf("%d\n",ans);
}
return 0;
}