@Chilling
2016-08-11T07:29:28.000000Z
字数 871
阅读 1184
数论
Description
Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
Input
For each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.
Output
For each test case, you should print the sum module 1000000007 in a line.
Sample Input
3
4
0
Sample Output
0
2
题意:求小于n并且与n不互质的数的和。
分析:欧拉函数求出phi(n),小于n并且与n互质的数的和为:
n*phi(n)/2。小于n的所有数的和减去与n互质的数的和。
#include<stdio.h>#include<math.h>#define LL long long#define MOD 1000000007LL phi(LL n){//LL m=(LL)sqrt(n+0.5) //开方很慢,265msLL ans=n;for(LL i=2;i*i<=n;i++) //写成i*i<=n而不是i<=m,15msif(n%i==0){ans=ans/i*(i-1);while(n%i==0)n/=i;}if(n>1)ans=ans/n*(n-1);return ans;}int main(){LL n;while(scanf("%lld",&n),n){// n*phi(n)/2 小于n且与n互质的数的和printf("%lld\n",(n*(n-1)/2-n*phi(n)/2)%MOD);}return 0;}
