[关闭]
@Chilling 2017-01-22T15:27:10.000000Z 字数 1496 阅读 768

SPOJ-INTSUB: Interesting Subset


Description

You are given a set X = {1, 2, 3, 4, … , 2n-1, 2n} where n is an integer. You have to find the number of interesting subsets of this set X.

A subset of set X is interesting if there are at least two integers a & b such that b is a multiple of a, i.e. remainder of b divides by a is zero and a is the smallest number in the set.

Input

The input file contains multiple test cases. The first line of the input is an integer T(<=30) denoting the number of test cases. Each of the next T lines contains an integer 'n' where 1<=n<=1000.

Output

For each test case, you have to output as the format below:

Case X: Y

Here X is the test case number and Y is the number of subsets. As the number Y can be very large, you need to output the number modulo 1000000007.

Example

Input

3
1
2
3

Output

Case 1: 1
Case 2: 9
Case 3: 47

题意: t组数据,每组输入一个n,代表一个包含数字1到2n的集合,问这个集合x中有多少个有趣的子集,对结果取模。有趣的子集定义是:这个子集中的a是当中最小的数,子集中一定包含一个a的倍数(不含a本身)。
比如n为2,集合中有数字1,2,3,4;如果选1作为a,那么有趣的子集有:{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4},{1,2,3,4};选择2为a,有{2,4},{2,3,4};一共九个。

分析:因为集合中一定存在n的倍数,那么a只能取到2n个数当中的前n个。
若取的a的下标为i,那么从i+1到2n中一共有x=2*n/i-1为a的倍数,对应有y=2*n-i-x个数不是a的倍数。
选择所有a的倍数有种选择,即;所有非a的倍数同理有种,非a的倍数和a倍数组合起来即相乘。使用快速幂计算。


  1. #include<stdio.h>
  2. #include<algorithm>
  3. #define LL long long
  4. using namespace std;
  5. const int MOD=1000000007;
  6. LL quick(LL x,LL m,LL n)//x^m%n
  7. {
  8. LL ans=1;
  9. while(m>0)
  10. {
  11. if(m%2==1)
  12. ans=ans*x%n;
  13. x=x*x%n;
  14. m=m/2;
  15. }
  16. return ans;
  17. }
  18. int main()
  19. {
  20. int t,n,o=0;
  21. LL ans;
  22. scanf("%d",&t);
  23. while(t--)
  24. {
  25. ans=0;
  26. scanf("%d",&n);
  27. for(int i=1;i<=n;i++)
  28. {
  29. LL x=2*n/i-1;
  30. LL y=2*n-i-x;
  31. LL m=quick(2,x,MOD)-1;
  32. ans+=m;
  33. ans=(ans+(m*(quick(2,y,MOD)-1))%MOD)%MOD;
  34. }
  35. printf("Case %d: %lld\n",++o,ans);
  36. }
  37. return 0;
  38. }
添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注