[关闭]
@songying 2018-10-15T09:26:02.000000Z 字数 415 阅读 1061

迁移学习

deep-learning


什么是迁移学习

迁移学习(Transfer learning) 顾名思义就是就是把已学训练好的模型参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率不用像大多数网络那样从零学习(starting from scratch,tabula rasa)。

预训练模型

预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型。你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手。
比如说,如果你想做一辆自动驾驶汽车,可以花数年时间从零开始构建一个性能优良的图像识别算法,也可以从Google在ImageNet数据集上训练得到的inception model(一个预训练模型)起步,来识别图像。

为什么使用预训练模型

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注