@songying
2018-06-21T20:36:19.000000Z
字数 1462
阅读 1139
word-embedding
代码地址: https://github.com/kimiyoung/fg-gating
We present a fine-grained gating mechanism to dynamically combine word-level and character-level representations based on properties of the words.
Word-level representations are good at memorizing the semantics of the tokens while character-level representations are more suitable for modeling sub-word morphologies (Ling et al., 2015; Yang et al., 2016a).
For example,considering “cat” and “cats”, word-level representations can only learn the similarities between the two tokens by training on a large amount of training data, while character-level representations, by design, can easily capture the similarities. Character-level representations are also used to alleviate the difficulties of modeling out-of-vocabulary (OOV) tokens (Luong & Manning, 2016).
document:
question:
每一个词的表示为 其中, 是该词的one-hot encoding格式。 是词中每个character的向量矩阵。
- : 表示document中的tokens的向量表示
- : 表示query中的tokens的向量表示
假设我们在第k层对和使用RNN来获得隐层状态 与 ,其中 是 M × d维的矩阵; 是 N × d维的矩阵;d是隐层单元数。
每个token的表示:
我们首先在C上使用RNN,并将最后一步的c作为character-level representation。 用E来表示the token embedding lookup table。我们使用Ew来获得token的word-level representation。我们假定c与Ew都是相同的长度。
我们提出使用一个门来动态的选择word-level representation 与 char-level representation.