@songying
2018-09-04T20:11:35.000000Z
字数 2299
阅读 1644
squad2
本文在于解决 squad 数据集中的unanswerable 问题。在本文中,我们提出了 a novel read-then-verify system, 该系统combines a base neural reader with a sentence-level answer verifier trained to further validate if the predicted answer is entailed by input snippets. 并且, we augment the
base reader with two auxiliary losses to better handle answer extraction and no-answer detection respectively, and investigate three different architectures for the answer verifier.
如图1所示,我们的系统包含两个部分:
- a no-answer reader for extracting candidate answers and detecting unanswerable questions
- an answer verifier for validating if the candidate answer is actually supported by its surrounding sentence and the question.
本节中心详细介绍我们的 read-then-verify 系统。 我们的系统首先利用一个reader提取候选答案并且检测该问题是否为unanswerable。 然后利用一个answer verifier 来进一步的识别 答案片段与问题。
我们的no-answer reader 参考下面两篇论文:
1. Zero-shot relation extraction via reading comprehension.
2. Simple and effective multi-paragraph reading comprehension.
We start from the standard no-answer reader that jointly learns answer extraction and no-answer detection, 然后引入两个auxiliary losses来分别优化两个任务, 两个任务之间互不干扰。
- 与 表示the predicted scores of the answer start/end positions for token i
- a,b are the ground-truth start and end positions
- n 表示passage的长度
- z: the score for an additional no-answer possibility.
- : 1 if the question is answerable and 0 otherwise.
Answer Verfiers 是用来进一步 recognize the local, fine-grained entailment between the answer sentence and the question. 我们针对该任务实验了三种架构,如图所示:
数据集采用 SQuAD 2.0, 它包含 SQuAD 1.1 的53775 个 answerable文件, 同时添加了很多 unanswerable 文件。
我们使用 Reinforced Mnemonic Reader :《 Reinforced mnemonic reader for machine reading comprehension》来作为我们的base reader。