@wanghuijiao
2021-09-29T08:56:54.000000Z
字数 4910
阅读 468
实验报告
模型名称 | 框架 | 性能指标(mAP) | 参数量 | 计算量(FLOPs) | 推理时间(V100) | 备注 |
---|---|---|---|---|---|---|
(大类_小类_分辨率) | 记得标明val dataset | |||||
YOlOX_s_320 | ||||||
YOlOX_Nano_320 | ||||||
YOlOX_Tiny_320 | ||||||
YOlOv5_s_320 | ||||||
YOlO-Fastest_1.1_320 | ||||||
YOlO-FastestV2__320 |
模型名称 | 框架 | 推理时间 | 性能指标(mAP) | 参数量(权重文件大小) | 计算量(FLOPs) | 配置文件 | 权重文件 | 备注 |
---|---|---|---|---|---|---|---|---|
(大类_小类_分辨率) | 记得标明val dataset | |||||||
YOlOX_s_320 |
class_id = 0, name = person, ap = 41.79% (TP = 59817, FP = 62063)
for conf_thresh = 0.25, precision = 0.49, recall = 0.45, F1-score = 0.47
for conf_thresh = 0.25, TP = 59817, FP = 62063, FN = 72779, average IoU = 36.59 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.417902, or 41.79 %
calculation mAP (mean average precision)...
Detection layer: 30 - type = 27
Detection layer: 37 - type = 27
388
detections_count = 847, unique_truth_count = 2420
class_id = 0, name = head, ap = 21.67% (TP = 352, FP = 18)
for conf_thresh = 0.25, precision = 0.95, recall = 0.15, F1-score = 0.25
for conf_thresh = 0.25, TP = 352, FP = 18, FN = 2068, average IoU = 74.58 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.216670, or 21.67 %
Total Detection Time: 5 Seconds
./yolov4_tiny_head_IR_cfg/backup_start/yolov4-tiny-IR-head-416x416_best.weights
calculation mAP (mean average precision)...
Detection layer: 30 - type = 27
Detection layer: 37 - type = 27
388
detections_count = 953, unique_truth_count = 2420
class_id = 0, name = head, ap = 23.68% (TP = 426, FP = 20)
for conf_thresh = 0.25, precision = 0.96, recall = 0.18, F1-score = 0.30
for conf_thresh = 0.25, TP = 426, FP = 20, FN = 1994, average IoU = 75.11 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.236756, or 23.68 %
Total Detection Time: 4 Seconds
7368
detections_count = 793939, unique_truth_count = 220056
class_id = 0, name = person, ap = 25.00% (TP = 36335, FP = 40491)
class_id = 1, name = head, ap = 15.86% (TP = 24146, FP = 61169)
class_id = 2, name = car, ap = 16.51% (TP = 1122, FP = 4569)
for conf_thresh = 0.25, precision = 0.37, recall = 0.28, F1-score = 0.32
for conf_thresh = 0.25, TP = 61603, FP = 106229, FN = 158453, average IoU = 26.33 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.191250, or 19.12 %
Total Detection Time: 184 Seconds
Set -points flag:
`-points 101` for MS COCO
`-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data)
`-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset
mean_average_precision (mAP@0.5) = 0.191250
85908
detections_count = 5484063, unique_truth_count = 1174038
class_id = 0, name = person, ap = 31.15% (TP = 234239, FP = 242316)
class_id = 1, name = head, ap = 32.05% (TP = 180216, FP = 240515)
class_id = 2, name = car, ap = 29.04% (TP = 30056, FP = 37160)
for conf_thresh = 0.25, precision = 0.46, recall = 0.38, F1-score = 0.42
for conf_thresh = 0.25, TP = 444511, FP = 519991, FN = 729527, average IoU = 34.25 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.307496, or 30.75 %
Total Detection Time: 1007 Seconds
class_id = 0, name = person, ap = 27.14% (TP = 38610, FP = 39395)
class_id = 1, name = head, ap = 22.47% (TP = 31045, FP = 56324)
class_id = 2, name = car, ap = 23.11% (TP = 2336, FP = 3504)
for conf_thresh = 0.25, precision = 0.42, recall = 0.31, F1-score = 0.36
for conf_thresh = 0.25, TP = 71991, FP = 99223, FN = 158505, average IoU = 30.88 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.242372, or 24.24 %
Total Detection Time: 200 Seconds
detections_count = 553895, unique_truth_count = 122198
class_id = 0, name = person, ap = 24.69% (TP = 37161, FP = 58262)
class_id = 1, name = head, ap = 74.99% (TP = 4337, FP = 3350)
class_id = 2, name = car, ap = 28.02% (TP = 1006, FP = 1583)
for conf_thresh = 0.25, precision = 0.40, recall = 0.35, F1-score = 0.37
for conf_thresh = 0.25, TP = 42504, FP = 63195, FN = 79694, average IoU = 30.70 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.425679, or 42.57 %
Total Detection Time: 361 Seconds
/ssd01/wanghuijiao/pose_detector02/crowdhuman_head_person.sh
4372
detections_count = 385365, unique_truth_count = 206230
class_id = 0, name = head, ap = 33.07% (TP = 31763, FP = 4845)
class_id = 1, name = person, ap = 53.16% (TP = 52055, FP = 16293)
for conf_thresh = 0.25, precision = 0.80, recall = 0.41, F1-score = 0.54
for conf_thresh = 0.25, TP = 83818, FP = 21138, FN = 122412, average IoU = 60.57 %
IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.431143, or 43.11 %
Total Detection Time: 173 Seconds
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.111
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.253
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.088
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.129
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.258
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.045
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.153
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.182
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.040
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.209
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.371