[关闭]
@wanghuijiao 2021-09-29T08:56:54.000000Z 字数 4910 阅读 468

人体检测器结果迭代

实验报告


前言

模型选型

模型名称 框架 性能指标(mAP) 参数量 计算量(FLOPs) 推理时间(V100) 备注
(大类_小类_分辨率) 记得标明val dataset
YOlOX_s_320
YOlOX_Nano_320
YOlOX_Tiny_320
YOlOv5_s_320
YOlO-Fastest_1.1_320
YOlO-FastestV2__320
模型名称 框架 推理时间 性能指标(mAP) 参数量(权重文件大小) 计算量(FLOPs) 配置文件 权重文件 备注
(大类_小类_分辨率) 记得标明val dataset
YOlOX_s_320

Yolo-Fastest Human

  1. class_id = 0, name = person, ap = 41.79% (TP = 59817, FP = 62063)
  2. for conf_thresh = 0.25, precision = 0.49, recall = 0.45, F1-score = 0.47
  3. for conf_thresh = 0.25, TP = 59817, FP = 62063, FN = 72779, average IoU = 36.59 %
  4. IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
  5. mean average precision (mAP@0.50) = 0.417902, or 41.79 %

yolov4-tiny-IR-head-416x416

  1. calculation mAP (mean average precision)...
  2. Detection layer: 30 - type = 27
  3. Detection layer: 37 - type = 27
  4. 388
  5. detections_count = 847, unique_truth_count = 2420
  6. class_id = 0, name = head, ap = 21.67% (TP = 352, FP = 18)
  7. for conf_thresh = 0.25, precision = 0.95, recall = 0.15, F1-score = 0.25
  8. for conf_thresh = 0.25, TP = 352, FP = 18, FN = 2068, average IoU = 74.58 %
  9. IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
  10. mean average precision (mAP@0.50) = 0.216670, or 21.67 %
  11. Total Detection Time: 5 Seconds
  1. calculation mAP (mean average precision)...
  2. Detection layer: 30 - type = 27
  3. Detection layer: 37 - type = 27
  4. 388
  5. detections_count = 953, unique_truth_count = 2420
  6. class_id = 0, name = head, ap = 23.68% (TP = 426, FP = 20)
  7. for conf_thresh = 0.25, precision = 0.96, recall = 0.18, F1-score = 0.30
  8. for conf_thresh = 0.25, TP = 426, FP = 20, FN = 1994, average IoU = 75.11 %
  9. IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
  10. mean average precision (mAP@0.50) = 0.236756, or 23.68 %
  11. Total Detection Time: 4 Seconds

0924 RGB_human_head_car_v1.0

  1. 7368
  2. detections_count = 793939, unique_truth_count = 220056
  3. class_id = 0, name = person, ap = 25.00% (TP = 36335, FP = 40491)
  4. class_id = 1, name = head, ap = 15.86% (TP = 24146, FP = 61169)
  5. class_id = 2, name = car, ap = 16.51% (TP = 1122, FP = 4569)
  6. for conf_thresh = 0.25, precision = 0.37, recall = 0.28, F1-score = 0.32
  7. for conf_thresh = 0.25, TP = 61603, FP = 106229, FN = 158453, average IoU = 26.33 %
  8. IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
  9. mean average precision (mAP@0.50) = 0.191250, or 19.12 %
  10. Total Detection Time: 184 Seconds
  11. Set -points flag:
  12. `-points 101` for MS COCO
  13. `-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data)
  14. `-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset
  15. mean_average_precision (mAP@0.5) = 0.191250
  16. 85908
  17. detections_count = 5484063, unique_truth_count = 1174038
  18. class_id = 0, name = person, ap = 31.15% (TP = 234239, FP = 242316)
  19. class_id = 1, name = head, ap = 32.05% (TP = 180216, FP = 240515)
  20. class_id = 2, name = car, ap = 29.04% (TP = 30056, FP = 37160)
  21. for conf_thresh = 0.25, precision = 0.46, recall = 0.38, F1-score = 0.42
  22. for conf_thresh = 0.25, TP = 444511, FP = 519991, FN = 729527, average IoU = 34.25 %
  23. IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
  24. mean average precision (mAP@0.50) = 0.307496, or 30.75 %
  25. Total Detection Time: 1007 Seconds
  26. class_id = 0, name = person, ap = 27.14% (TP = 38610, FP = 39395)
  27. class_id = 1, name = head, ap = 22.47% (TP = 31045, FP = 56324)
  28. class_id = 2, name = car, ap = 23.11% (TP = 2336, FP = 3504)
  29. for conf_thresh = 0.25, precision = 0.42, recall = 0.31, F1-score = 0.36
  30. for conf_thresh = 0.25, TP = 71991, FP = 99223, FN = 158505, average IoU = 30.88 %
  31. IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
  32. mean average precision (mAP@0.50) = 0.242372, or 24.24 %
  33. Total Detection Time: 200 Seconds

0929 RGB_human_head_car_v2.0

  1. detections_count = 553895, unique_truth_count = 122198
  2. class_id = 0, name = person, ap = 24.69% (TP = 37161, FP = 58262)
  3. class_id = 1, name = head, ap = 74.99% (TP = 4337, FP = 3350)
  4. class_id = 2, name = car, ap = 28.02% (TP = 1006, FP = 1583)
  5. for conf_thresh = 0.25, precision = 0.40, recall = 0.35, F1-score = 0.37
  6. for conf_thresh = 0.25, TP = 42504, FP = 63195, FN = 79694, average IoU = 30.70 %
  7. IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
  8. mean average precision (mAP@0.50) = 0.425679, or 42.57 %
  9. Total Detection Time: 361 Seconds

0924 crowd human head

/ssd01/wanghuijiao/pose_detector02/crowdhuman_head_person.sh

  1. 4372
  2. detections_count = 385365, unique_truth_count = 206230
  3. class_id = 0, name = head, ap = 33.07% (TP = 31763, FP = 4845)
  4. class_id = 1, name = person, ap = 53.16% (TP = 52055, FP = 16293)
  5. for conf_thresh = 0.25, precision = 0.80, recall = 0.41, F1-score = 0.54
  6. for conf_thresh = 0.25, TP = 83818, FP = 21138, FN = 122412, average IoU = 60.57 %
  7. IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
  8. mean average precision (mAP@0.50) = 0.431143, or 43.11 %
  9. Total Detection Time: 173 Seconds

0926 APs

  1. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.111
  2. Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.253
  3. Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.088
  4. Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022
  5. Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.129
  6. Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.258
  7. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.045
  8. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.153
  9. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.182
  10. Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.040
  11. Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.209
  12. Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.371
添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注