@fanxy
2016-11-09T08:45:49.000000Z
字数 3930
阅读 2168
樊潇彦
复旦大学经济学院
# 用 install.packages("**") 安装命令包后调用:
library(readxl) # 读取excel数据
library(stringr) # 字符串处理
library(corrplot)
library(igraph)
library(forecast)
library(stats) # 基础包,不用安装直接调用
library(dplyr)
library(tidyr)
library(data.table)
library(foreign)
library(readstata13)
library(haven)
library(ggplot2)
library(ggrepel)
library(dygraphs)
library(plotrix)
library(lubridate)
library(zoo)
library(mFilter)
library(RCurl)
library(httr)
set_config( config( ssl_verifypeer = 0L ))
library(Quandl)
Quandl.api_key("...") # 在Quandl(https://www.quandl.com)免费申请 api_key
setwd("D:\\...") # 设置工作目录
rm(list=ls()) # 清内存
从国际清算银行网页(http://www.bis.org/statistics/full_data_sets.htm)下载有效汇率数据 "Effective exchange rate indices (monthly).csv",整理后取61个国家和地区加权的名义有效汇率做图:
在 Quandl 注册一个免费帐号,从 https://www.quandl.com/collections/economics 下载各类经济数据。
currency=c("BRL","ZAR","CNY","RUB","INR")
currency_name=data.frame(currency=currency,
name=c("巴西-雷亚尔","南非-兰特","中国-元","俄罗斯-卢布","印度-卢比"),
stringsAsFactors =F)
list=paste("CURRFX/USD",currency,sep="") # Currency Exchange Rates - USD
E_daily=data.frame()
for (i in 1:length(currency)){
E=Quandl(list[i], start_date="1970-01-01")
E=E%>% select(Date,Rate)%>%mutate(currency=currency[i])
E_daily=rbind(E_daily,E)
}
E_daily=E_daily%>%
left_join(currency_name,by="currency")%>%
mutate(label=ifelse(Date==as.Date("2013-06-04"),name,""))
ggplot(E_daily[E_daily$Rate<1000,],aes(Date,Rate,color=name))+geom_line()+
labs(title="金砖五国货币兑美元汇率",x="",y="")+
geom_text(aes(label=label,vjust =-0.5))+
guides(color=guide_legend(title=NULL))+theme_bw()+theme(legend.position="non")
country=c("USA","BRA","CHN","IND","RUS","ZAF")
list_pi=paste("WORLDBANK/",country,"_NY_GDP_DEFL_KD_ZG", sep="") # Inflation, GDP deflator (annual %)
list_g=paste("ODA/",country,"_NGDP_RPCH",sep="") # GDP at Constant Prices, % change
list_M2NGDP=paste("WORLDBANK/",country,"_FM_LBL_MQMY_GD_ZS",sep="") # Money and quasi money (M2) as % of GDP
list_NGDP=paste("ODA/",country,"_NGDP", sep="") # GDP at Current Prices, LCU Billions
list_i=paste("WORLDBANK/",country,"_FR_INR_LEND",sep="") # Lending interest rate (%) 存款利率部分国家没有
list_ca=paste("ODA/",country,"_BCA_NGDPD",sep="") # Current Account Balance, % of GDP
list_var=c("pi","g","M2NGDP","NGDP","lendi","ca")
Data=data.frame()
for (i in 1:length(country)){
pi=Quandl(list_pi[i])
g=Quandl(list_g[i])
M2NGDP=Quandl(list_M2NGDP[i])
NGDP=Quandl(list_NGDP[i])
lendi=Quandl(list_i[i])
ca=Quandl(list_ca[i])
var=rep(list_var,time=c(nrow(pi),nrow(g),nrow(M2NGDP),nrow(NGDP),nrow(lendi),nrow(ca)))
D=rbind(pi,g,M2NGDP,NGDP,lendi,ca)
Data=rbind(Data,data.frame(D,var=var,country=rep(country[i],nrow(D))))
rm(list=list_var)
}
# save(E_daily,Data,file="BRICS.RData") # 上述数据下载较慢,已另存
load("BRICS.Rdata") # 直接加载
cc=data.frame(currency=c("USD","BRL","CNY","INR","RUB","ZAR"),
country=c("USA","BRA","CHN","IND","RUS","ZAF"),stringsAsFactors = F)
E=E_daily%>%
mutate(year=as.numeric(year(Date)))%>%
group_by(currency,year)%>%
mutate(rk=n()+1-min_rank(Date))%>%
filter(rk==n())%>%
select(year,currency,Rate,name)%>%
mutate(id=paste(year,currency,sep=""))
Data=Data%>%
mutate(year=as.numeric(year(Date)))%>%
select(-Date)%>%
spread(var,Value)%>%
left_join(cc,by="country")%>%
mutate(id=paste(year,currency,sep=""))%>%
left_join(E,by="id")%>%
select(-year.y,-currency.y,-id)%>%
rename(year=year.x)%>%
rename(currency=currency.x)%>%
mutate(M2=M2NGDP*NGDP)%>%
arrange(country,year)%>%
group_by(country)%>%
mutate(gE=lead(Rate)/Rate-1)%>%
mutate(gM2=M2/lag(M2)-1)%>%
mutate(i_us=ifelse(country=="USA",lendi,NA))%>%
mutate(ca_us=ifelse(country=="USA",ca,NA))%>%
mutate(pi_us=ifelse(country=="USA",pi,NA))%>%
group_by(year)%>%
mutate(diffi=lendi-max(i_us,na.rm=T))%>%
mutate(diffca=ca-max(ca_us,na.rm=T))%>%
mutate(diffpi=pi-max(pi_us,na.rm=T))
regPPP=lm(gE~gM2+g-1,data=Data)
summary(regPPP)
regpi=lm(gE~diffpi-1,data=Data)
summary(regpi)
regi=lm(gE~diffi-1,data=Data)
summary(regi)
regca=lm(gE~diffca-1,data=Data)
summary(regca)