@Channelchan
2017-07-08T15:14:55.000000Z
字数 929
阅读 25217
Python的机器学习库,用于数据挖掘和数据分析的简单而有效的工具。
from sklearn.linear_model import Lasso
model_Lasso = Lasso(alpha=0.1)
X = [[-1,-1], [0,0], [1,1]]
y = [-1,0,1]
model_Lasso.fit(X,y)
from sklearn.svm import SVC
import numpy as np
X = np.array([[-3,-2],[-4,-5],[3,4],[4,5]])
y = np.array([1, 1, 2, 2])
model_SVC = SVC()
model_SVC.fit(X, y)
Rolling 计算Regression
from sklearn import linear_model
from sklearn.metrics import r2_score
reg = linear_model.Lasso(alpha=1)
result = result.dropna()
# print result
y = result.HS300_close.values
target = result[["ADP_MAS", "HLP_MAS", "MAP_MAS", 'VOL_MAS']]
data = map(lambda row: list(row[1]), target.iterrows())
residual=[]
for i in range(0, len(data)-100, 1):
X = data[i:100+i]
# print len(X)
YY = y[i:100+i]
reg.fit(X, YY)
print reg.score(X, YY)
rsd = YY - reg.predict(X)
residual.append(rsd[-1])
res = pd.Series(residual, index=result.index[100:])
官方文档: http://scikit-learn.org/