@Channelchan
2018-11-29T23:03:14.000000Z
字数 2215
阅读 149849
量化是技术分析最好的体现
定义: '技术分析是指以市场行为为研究对象,以判断市场趋势并跟随趋势的周期性变化来进行股票及一切金融衍生物交易决策的方法的总和。'
反对派:
1. 有效市场假说:
弱有效市场(价格衍生的数据无用),半强式有效市场假说(过去的公开信息无用),强有效市场假说(内幕消息无用)
2. 随机波动原理:
支持派:
1. 行为金融学:
套利回归正确价位的限制,人类理性的限制
安装talib编译版本:http://www.lfd.uci.edu/~gohlke/pythonlibs/
数据获取 :
https://pan.baidu.com/s/116o6LU1MX-E8NyqpEKxu4g
import talib as ta
import pandas as pd
import warnings
import numpy as np
warnings.filterwarnings('ignore')
data = pd.read_excel('three.xlsx', sheetname='BTCUSDT.binance', index_col='datetime')
#读取'numpy.ndarray'
print(ta.MA(data.close.values, 5)[-5:])
[4293.452 4286.222 4273.788 4235.412 4222.592]
print(type(data))
<class 'pandas.core.frame.DataFrame'>
print(data.tail())
datetime
2018-11-28 22:00:00 4236.09
2018-11-28 23:00:00 4264.85
2018-11-29 00:00:00 4270.00
2018-11-29 01:00:00 4162.55
2018-11-29 02:00:00 4179.47
Name: close, dtype: float64
from talib import abstract
#直接读取DataFrame,默认读取cloumns名为close的数据。
data['close'] = data.close
print(abstract.MA(data,2).tail(10))
datetime
2018-11-28 17:00:00 4228.340
2018-11-28 18:00:00 4280.295
2018-11-28 19:00:00 4316.585
2018-11-28 20:00:00 4343.300
2018-11-28 21:00:00 4299.000
2018-11-28 22:00:00 4239.830
2018-11-28 23:00:00 4250.470
2018-11-29 00:00:00 4267.425
2018-11-29 01:00:00 4216.275
2018-11-29 02:00:00 4171.010
dtype: float64
#Example
from datetime import datetime
data=data.close
print(data.tail())
datetime
2018-11-28 22:00:00 4236.09
2018-11-28 23:00:00 4264.85
2018-11-29 00:00:00 4270.00
2018-11-29 01:00:00 4162.55
2018-11-29 02:00:00 4179.47
Name: close, dtype: float64
print(data.values[-5:])
print(type(data.values))
[4236.09 4264.85 4270. 4162.55 4179.47]
<class 'numpy.ndarray'>
#读取'numpy.ndarray'
ta.MA(data.values, 2)[-5:]
array([4239.83 , 4250.47 , 4267.425, 4216.275, 4171.01 ])