[关闭]
@xunuo 2017-04-16T21:27:18.000000Z 字数 2130 阅读 1043

HDU 1372 Knight Moves


Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

BFS


Description

A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part. 

Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b. 

Input

The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard. 

Output

For each test case, print one line saying "To get from xx to yy takes n knight moves.". 

Sample Input

e2 e4
a1 b2
b2 c3
a1 h8
a1 h7
h8 a1
b1 c3
f6 f6

Sample Output

To get from e2 to e4 takes 2 knight moves.
To get from a1 to b2 takes 4 knight moves.
To get from b2 to c3 takes 2 knight moves.
To get from a1 to h8 takes 6 knight moves.
To get from a1 to h7 takes 5 knight moves.
To get from h8 to a1 takes 6 knight moves.
To get from b1 to c3 takes 1 knight moves.
To get from f6 to f6 takes 0 knight moves.

题意:

以a到h为列;1到8为行建图,从一个点走到另一个点,走的是日字;问你从一个点到另一个点的最短距离是多少

解题思路:

裸的BFS

完整代码:

  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. int dir[8][2]={1,2,-1,2,-1,-2,1,-2,2,1,-2,-1,-2,1,2,-1};
  4. int vis[10][10];
  5. int ans;
  6. struct node
  7. {
  8. int x,y;
  9. int num;
  10. };
  11. int bfs(int x1,int y1,int x2,int y2)
  12. {
  13. queue<node>q;
  14. node now,next;
  15. ans=0;
  16. now.x=x1;
  17. now.y=y1;
  18. now.num=0;
  19. q.push(now);
  20. vis[x1][y1]=1;
  21. while(!q.empty())
  22. {
  23. now=q.front();
  24. q.pop();
  25. if(now.x==x2&&now.y==y2)
  26. {
  27. ans=now.num;
  28. break;
  29. }
  30. for(int i=0;i<8;i++)
  31. {
  32. next.x=now.x+dir[i][0];
  33. next.y=now.y+dir[i][1];
  34. if(next.x<=8&&next.x>0&&next.y>0&&next.y<=8&&vis[next.x][next.y]==0)
  35. {
  36. vis[next.x][next.y]=1;
  37. next.num=now.num+1;
  38. q.push(next);
  39. }
  40. }
  41. }
  42. return ans;
  43. }
  44. int main()
  45. {
  46. char s1[3],s2[3];
  47. while(scanf("%s%s",s1,s2)!=EOF)
  48. {
  49. memset(vis,0,sizeof(vis));
  50. int x1=s1[1]-'0';
  51. int y1=s1[0]-'a'+1;
  52. int x2=s2[1]-'0';
  53. int y2=s2[0]-'a'+1;
  54. printf("To get from %s to %s takes %d knight moves.\n",s1,s2,bfs(x1,y1,x2,y2));
  55. }
  56. return 0;
  57. }
添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注