@xunuo
2017-02-15T20:25:20.000000Z
字数 832
阅读 1044
Time limit 10000 msMemory limit 165888 kB
数论
给出一个凸n边形,求用n-3条不相交的对角线将该n边形划分为三角形的方案数
First line of the input will be an integer t (1<=t<=100000) which is the no of test cases. Each test case contains a single integer n (3<=n<=1000) which is the size of the polygon.
For each test case output the no of ways %100007.
Input:
2
3
5
Output:
1
5
题意:
题意是明了的......
解题思路:
卡特兰数,,具体的我并不知道;其实我只想记个代码//
卡特兰数:
1、通项公式:h(n)=C(n,2n)/(n+1)=(2n)!/((n!)*(n+1)!)
2、递推公式:h(n)=((4*n-2)/(n+1))*h(n-1);
h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)*h(0).
3、前几项为:h(0)=1,h(1)=1,h(2)=2,h(3)=5,h(4)=14,h(5)=42,......
代码:
#include<stdio.h>
#include<algorithm>
using namespace std;
#define ll long long
ll h[1010];
int main()
{
h[0]=1;h[1]=1;
for(int i=2;i<1005;i++)
for(int j=0;j<i;j++)
{
h[i]+=h[j]*h[i-j-1];
h[i]=h[i]%100007;
}
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
printf("%lld\n",h[n-2]);
}
return 0;
}