@xunuo
2017-03-25T11:43:32.000000Z
字数 1541
阅读 1201
Time Limit: 1000MS Memory Limit: 65536K
矩阵快速幂
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
Given an integer n, your goal is to compute the last 4 digits of Fn.
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
0
9
999999999
1000000000
-1
0
34
626
6875
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
题意:
Fibonacci数列,问你第n个是多少?
解题思路:
由题+图可知:裸的矩阵快速幂,再取个模;模板模板,一切都是模板。。。。。
完整代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int mod=10000;
struct node
{
int a[2][2];
void init()
{
a[0][0]=0,a[0][1]=1;
a[1][0]=1,a[1][1]=1;
}
};
node matrixmul(node x,node y)
{
node z;
for(int i=0;i<2;i++)///题中为2*2的矩阵
{
for(int j=0;j<2;j++)
{
z.a[i][j]=0;
for(int k=0;k<2;k++)
z.a[i][j]+=(x.a[i][k]*y.a[k][j]);///矩阵乘法
z.a[i][j]%=mod;
}
}
return z;
}
node mul(node s,int k)
{
node ans;
ans.init();
while(k>=1)
{
if(k&1)
ans=matrixmul(ans,s);
k>>=1;
s=matrixmul(s,s);
}
return ans;
}
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
int ans;
if(n==-1)
break;
if(n==0)
ans=0;
else
{
node s;
s.init();
s=mul(s,n-1);
ans=s.a[0][1]%mod;
}
printf("%d\n",ans);
}
return 0;
}