@xunuo
2017-01-16T14:21:57.000000Z
字数 1986
阅读 1081
Time limit 1000 ms Memory limit 65536 kB
区间DP
来源:
poj: poj 1141 Brackets Sequence
vjudge:c-Brackets Sequence
Let us define a regular brackets sequence in the following way:
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([(]
Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.
The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.
Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.
([(]
()[()]
题意:
输入一串只有 '(' ')' '[' ']'的字符串,求最少加入多少个括号能够使它组成完整。输出完整的字符串
解题思路:
区间DP......
记得自己推一遍,,,你就明白了@_@
你自己是想不到的-_-||
完整代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define inf 0x3ffffff
char s[110];
int dp[110][110],vis[110][110];
void print(int i,int j)
{
if(i>j)
return;
if(i==j)
{
if(s[i]=='('||s[i]==')')
printf("()");
else if(s[i]=='['||s[i]==']')
printf("[]");
}
else if(vis[i][j]==-1)
{
printf("%c",s[i]);
print(i+1,j-1);
printf("%c",s[j]);
}
else
{
print(i,vis[i][j]);
print(vis[i][j]+1,j);
}
}
int main()
{
gets(s);
int len=strlen(s);
for(int i=0;i<len;i++)
dp[i][i]=1;
for(int l=1;l<len;l++)
for(int i=0;i<len-l;i++)
{
int j=l+i;
dp[i][j]=inf;
if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
{
if(dp[i][j]>dp[i+1][j-1])
{
dp[i][j]=dp[i+1][j-1];
vis[i][j]=-1;///表示s[i] 与s[j] 匹配时是最优的;
}
}
for(int k=i;k<j;k++)
{
if(dp[i][j]>dp[i][k]+dp[k+1][j])
{
dp[i][j]=dp[i][k]+dp[k+1][j];
vis[i][j]=k;///表示以k为分割点匹配时最优;
}
}
}
print(0,len-1);
printf("\n");
return 0;
}