[关闭]
@ybtang21c 2021-11-15T01:47:47.000000Z 字数 27342 阅读 1926

4.4 矩阵的奇异值分解

高等工程数学 讲义 2021



4.4.1 奇异值

引理 ,则


证明思路: 是齐次方程组 的非零解.


引理,则


引理的证明思路


引理,则 的特征值均非负。


推论 ,则 有相同的正特征值.


讨论:

  1. ,则必有 .
    • 可知 也是 的特征值.
    • 由此不难看出 有相同的正特征值.
  2. ,即 .
    • 因为 同解,故 .
    • 零向量不能作为特征向量,故此时由 无法推出 也是 的特征值.

奇异值

的特征值为 ,则

称为 奇异值 (Singular Value).


的奇异值.


的奇异值.


提示


另一种解法


4.4.2 奇异值分解

,则存在 阶酉矩阵 阶酉矩阵 ,使得


证明思路:




4.4.3 奇异值分解的求解

  1. 的特征值以及对应单位正交特征向量:
    • .
    • .
  2. , , , ,令 .
  3. 的列向量扩张成 的标准正交基 ,令 .

的奇异值分解.





注:

的 SVD 为


的奇异值分解.


提示






问题出在哪里?


4.4.4 奇异值分解的应用

  1. 最小二乘问题 (Least Squares Problem)
  2. 数据/图像压缩 (Data/Image Compression)
  3. 潜在语义索引 (Latent Semantic Indexing)

最小二乘问题

,求 ,使得



数据压缩

矩阵 包含 个数据,可否使用尽可能少的数据来表示(或逼近)


一幅图像可以对应于一个矩阵 ,其中 表示坐标 处的点的像素值(或灰度).


潜在语义索引(Latent Semantic Indexing, LSI)[1]

一百万篇文章和五十万个不同词汇的关联可以描述为一个 的矩阵

svd.png


为例[2]

svd-2d.jpg


小结


SVD[3]

SVD-wiki.png


A brief history of SVD[4]

The singular value decomposition was originally developed by differential geometers, who wished to determine whether a real bilinear form could be made equal to another by independent orthogonal transformations of the two spaces it acts on. Eugenio Beltrami and Camille Jordan discovered independently, in 1873 and 1874 respectively, that the singular values of the bilinear forms, represented as a matrix, form a complete set of invariants for bilinear forms under orthogonal substitutions. James Joseph Sylvester also arrived at the singular value decomposition for real square matrices in 1889, apparently independently of both Beltrami and Jordan. Sylvester called the singular values the canonical multipliers of the matrix A. The fourth mathematician to discover the singular value decomposition independently is Autonne in 1915, who arrived at it via the polar decomposition. The first proof of the singular value decomposition for rectangular and complex matrices seems to be by Carl Eckart and Gale J. Young in 1936; they saw it as a generalization of the principal axis transformation for Hermitian matrices.


Practical methods for computing the SVD date back to Kogbetliantz in 1954, 1955 and Hestenes in 1958, resembling closely the Jacobi eigenvalue algorithm, which uses plane rotations or Givens rotations. However, these were replaced by the method of Gene Golub and William Kahan published in 1965, which uses Householder transformations or reflections. In 1970, Golub and Christian Reinsch published a variant of the Golub/Kahan algorithm[5] that is still the one most-used today.

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注