@ybtang21c
2021-11-15T01:47:47.000000Z
字数 27342
阅读 1926
高等工程数学
讲义
2021
引理 设 ,则
证明思路:
设 是齐次方程组 的非零解.
引理 设 ,,则
引理的证明思路
引理 设 ,则 和 的特征值均非负。
证明思路:
设 .推论 设 ,则 和 有相同的正特征值.
证明思路:
.讨论: 设
设 , 的特征值为 ,则
称为 的 奇异值 (Singular Value).
例 求 的奇异值.
提示:
.例 求 的奇异值.
提示
另一种解法
设 , ,则存在 阶酉矩阵 和 阶酉矩阵 ,使得
证明思路:
例 求 的奇异值分解.
提示:
.注:
设 的 SVD 为
例 求 的奇异值分解.
提示
问题出在哪里?
最小二乘问题
(Least Squares Problem)数据/图像压缩
(Data/Image Compression)潜在语义索引
(Latent Semantic Indexing)设 , ,求 ,使得
矩阵 包含 个数据,可否使用尽可能少的数据来表示(或逼近) ?
冗余度
(Redundancy)例 一幅图像可以对应于一个矩阵 ,其中 表示坐标 处的点的像素值(或灰度).
潜在语义索引(Latent Semantic Indexing, LSI)[1]
例 一百万篇文章和五十万个不同词汇的关联可以描述为一个 的矩阵
三千分之一
.主题
,列中元素代表每篇文章与之的相关性.主题
,行中元素代表每个单词与之的相关性.重要性
.以 为例[2]
聚类
(Clustering).SVD[3]
A brief history of SVD[4]
The singular value decomposition was originally developed by differential geometers, who wished to determine whether a real bilinear form could be made equal to another by independent orthogonal transformations of the two spaces it acts on. Eugenio Beltrami
and Camille Jordan
discovered independently, in 1873
and 1874
respectively, that the singular values of the bilinear forms, represented as a matrix, form a complete set of invariants for bilinear forms under orthogonal substitutions. James Joseph Sylvester
also arrived at the singular value decomposition for real square matrices in 1889
, apparently independently of both Beltrami and Jordan. Sylvester called the singular values the canonical multipliers of the matrix
A. The fourth mathematician to discover the singular value decomposition independently is Autonne
in 1915
, who arrived at it via the polar decomposition. The first proof of the singular value decomposition for rectangular and complex matrices seems to be by Carl Eckart
and Gale J. Young
in 1936
; they saw it as a generalization of the principal axis transformation for Hermitian matrices.
Practical methods for computing the SVD date back to Kogbetliantz
in 1954
, 1955 and Hestenes
in 1958
, resembling closely the Jacobi eigenvalue algorithm, which uses plane rotations or Givens rotations. However, these were replaced by the method of Gene Golub
and William Kahan
published in 1965
, which uses Householder transformations or reflections. In 1970, Golub
and Christian Reinsch
published a variant of the Golub/Kahan algorithm[5] that is still the one most-used today.