@zzzc18
2017-09-24T16:45:38.000000Z
字数 1613
阅读 1573
TEST
这里采用颜色数来进行计数(不然岂不是不可做?)
然后就顺理成章地有了以下内容
上述算法复杂度是 显然不可接受
但是我们考虑 的过程就类似于矩阵的乘法()
这样,把 作为左边的矩阵, 作为右边的矩阵,答案就是
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const LL MAXN = 109;
const LL MOD = 998244353;
LL n,m,p,q;
LL C[MAXN][MAXN];
LL f[MAXN][MAXN];
LL g[MAXN];
struct Matrix{
LL num[MAXN][MAXN];
Matrix(){
memset(num,0,sizeof(num));
}
};
Matrix operator * (Matrix A,Matrix B){
LL i,j,k;
Matrix re;
for(i=1;i<=p;i++){
for(j=1;j<=p;j++){
for(k=1;k<=p;k++){
re.num[i][j]=(re.num[i][j]+A.num[i][k]*B.num[k][j])%MOD;
}
}
}
return re;
}
LL qpow_num(LL x,LL k){
LL i;
LL re=1,tmp=x;
for(i=1;i<=k;i<<=1){
if(i&k){
re*=tmp;
re%=MOD;
}
tmp*=tmp;
tmp%=MOD;
}
return re;
}
void INIT(){
LL i,j;
C[0][0]=1;
for(i=1;i<MAXN;i++){
C[i][0]=C[i][i]=1;
for(j=1;j<i;j++){
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
}
f[0][0]=1;
for(i=1;i<MAXN;i++){
for(j=1;j<MAXN;j++){
f[i][j]=(f[i-1][j-1]*(p-(j-1))%MOD+f[i-1][j]*j%MOD)%MOD;
}
}
for(i=0;i<MAXN;i++)
g[i]=f[n][i];
}
LL calg(LL x){
return g[x]*qpow_num(C[p][x],MOD-2)%MOD;
}
void solve(){
Matrix ans,trans;
for(int i=1;i<=p;i++)ans.num[1][i]=g[i];
LL i,j,k;
for(i=1;i<=p;i++){
for(j=1;j<=p;j++){
for(k=max(q,max(i,j));k<=min(p,i+j);k++){
trans.num[i][j]=(trans.num[i][j]+C[i][i+j-k]*C[p-i][k-i])%MOD;
}
trans.num[i][j]=(calg(j)*trans.num[i][j])%MOD;
}
}
m--;
for(i=1;i<=m;i<<=1){
if(m&i){
ans=ans*trans;
}
trans=trans*trans;
}
LL ANS=0;
for(i=1;i<=p;i++){
ANS=(ANS+ans.num[1][i])%MOD;
}
printf("%lld\n",ANS);
}
int main(){
freopen("color.in","r",stdin);
freopen("color.out","w",stdout);
scanf("%lld%lld%lld%lld",&n,&m,&p,&q);
INIT();
solve();
return 0;
}