@rg070836rg
2015-11-19T22:00:07.000000Z
字数 2700
阅读 1459
算法概论实验
实验六
实验目的与要求:掌握动态规划方法的基本思想与设计策略。
1.最长公共子序列问题
【问题描述】
⑴ 给定两个字符串X和Y,设计一个动态规划算法,求出这两个字符串的最长公共子序列,并输出该子序列。
⑵ 若仅要求求出两个字符串的最长公共子序列的长度值,为节省存储空间,采用“滚动数组”方式实现动态规划算法。
2.0-1背包问题
【问题描述】
给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为W(假定物品重量与背包容量值均为整数),应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?设计一个动态规划算法,求解背包问题。
// ConsoleApplication2.cpp : 定义控制台应用程序的入口点。
// VS2013 CPP CODE
//
#include "stdafx.h"
#include<iostream>
using namespace std;
void PrintLcsPath(int ** b, char * x, int m, int n)
{
if (m == 0 | n == 0)
return;
if (b[m][n] == 1)
{
PrintLcsPath(b, x, m - 1, n - 1);
cout << x[m - 1];
}
else if (b[m][n] == 2)
PrintLcsPath(b, x, m, n - 1);
else
PrintLcsPath(b, x, m - 1, n);
}
void print(int ** a, int m, int n)
{
for (int i = 0; i < m + 1; i++)
{
for (int j = 0; j < n + 1; j++)
cout << a[i][j] << " ";
cout << endl;
}
}
int LcsLength(char *x, char *y, int m, int n)
{
//创建一个 m+1 * n+1 用于存储LCS
int **a = new int *[m + 1];
for (int i = 0; i < m + 1; i++)
a[i] = new int[n + 1];
//创建一个 m+1 * n+1 用于存储状态
//来自于对角线 1 来自于左侧2 来自于上方3
int **b = new int *[m + 1];
for (int i = 0; i < m + 1; i++)
b[i] = new int[n + 1];
//base case
for (int i = 0; i < m + 1; i++)
a[i][0] = 0;
for (int i = 0; i < n + 1; i++)
a[0][i] = 0;
//for
for (int i =1; i < m + 1;i++)
{
for (int j =1; j < n + 1;j++)
{
if (x[i-1]==y[j-1])
{
a[i][j] = a[i - 1][j - 1] + 1;
b[i][j] = 1;
}
else
{
if (a[i-1][j] <= a[i][j-1])
{
a[i][j] = a[i][j - 1];
b[i][j] = 2;
}
else
{
a[i][j] = a[i - 1][j];
b[i][j] = 3;
}
}
}
}
/*print(a, m, n);
cout << endl;
print(b, m, n);*/
cout << "LCS为:";
PrintLcsPath(b, x, m, n);
cout << endl;
return a[m][n];
}
int main()
{
char x[] = "12312312qwe12312";
char y[] = "abqweqw123e123123qwcbdab";
int m = strlen(x);
int n = strlen(y);
cout << "LCS的长度为:" << LcsLength(x, y, m, n) << endl;
}
// N给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为W(假定物品重量与背包容量值均为整数),应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?设计一个动态规划算法,求解背包问题。
//
#include "stdafx.h"
#include <iostream>
using namespace std;
#define W 50
void print(int ** a, int m, int n)
{
for (int i = 0; i < m + 1; i++)
{
for (int j = 0; j < n + 1; j++)
cout << a[i][j] << " ";
cout << endl;
}
}
void Trackback(int *weight, int n, int w,bool *p,int **a)
{
if (n==0 || w==0)
return;
if (a[w][n]==a[w][n-1])//若和左边的一致,说明没有选最后一个
{
p[n - 1] = false;
Trackback(weight, n - 1, w, p, a);
}
else
{
p[n - 1] = true;
Trackback(weight, n - 1, w-weight[n-1], p, a);
}
}
int getMaxValue(int w, int n, int *price, int * weight )
{
//创建一个 w+1 * n+1 的二维表
int **a = new int *[w + 1];
for (int i = 0; i < w + 1;i++)
{
a[i] = new int[n + 1];
}
//创建一个数组 记录货物是否取的状态
bool *p = new bool[w];
memset(p, false, sizeof(p));
//base case
for (int i = 0; i < w + 1; i++)
a[i][0] = 0;
for (int i = 0; i < n + 1; i++)
a[0][i] = 0;
//for
for (int i = 1; i < w + 1;i++)
{
for (int j = 1; j < n + 1;j++)
{
if (i<weight[j-1])//填写a[i][j],若当前背包重量小于物品,则不装
{
a[i][j] = a[i][j - 1];
}
else
{
if (a[i][j-1] <= a[i-weight[j-1]][j-1]+price[j-1])
{
a[i][j] = a[i - weight[j - 1]][j - 1] + price[j - 1] ;
}
else
a[i][j] = a[i][j - 1];
}
}
}
//print(a,w,n);
Trackback(weight, n, w, p, a);
cout << "从左到右是否取件为:";
for (int i = 0; i < n; i++)
cout << p[i] << " ";
cout << endl;
return a[w][n];
}
int main()
{
//int price[] = { 1, 2, 3, 4, 7 };
//int weight[] = { 2, 4, 5, 6, 210 };
int price[] = { 60, 100, 120 };
int weight[] = { 10, 20, 30 };
cout << "背包问题的解是:"<<getMaxValue(W, 5, price, weight) << endl;
return 0;
}