[关闭]
@rg070836rg 2019-03-04T14:44:16.000000Z 字数 11507 阅读 795

活动、移动联合建模

人流量

Who, Where, When and What: Discover Spatio-Temporal Topics for Twitter Users

KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, Nadia Magnenat-Thalmann

模型与方法:

特点

What's Your Next Move: User Activity Prediction in Location-based Social Networks

Proceedings of the 2013 SIAM International Conference on Data Mining
Jihang Ye, Zhe Zhu, Hong Cheng

模型与方法:

特点:

Lifting the Predictability of Human Mobility on Activity Trajectories

2015 IEEE 15th International Conference on Data Mining Workshops
Xianming Li, Defu Lian, Xing Xie and Guangzhong Sun

模型与方法:

特点:

Personalized Point-of-Interest Recommendation by Mining Users’ Preference Transition

CIKM'13, Xin Liu, Yong Liu and Karl Aberer

模型与方法:

特点:

Location Recommendation Based on Periodicity of Human Activities and Location Categories

PAKDD 2013, Seyyed Mohammadreza Rahimi and Xin Wang

模型与方法:

特点:

Collaborative Filtering Meets Mobile Recommendation: A User-centered Approach

AAAI 2010, Vincent W. Zheng, Bin Cao, Yu Zheng, Xing Xie and Qiang Yang

模型与方法:

特点:

Inferring and Exploiting Categories for Next Location Prediction

Www'15 Companion: Proceedings of the 24th International Conference on World Wide Web

Likhyani A. , Padmanabhan D. , Bedathur S. , Mehta, S.

模型与方法:

特点:

TOPTRAC: Topical Trajectory Pattern Mining

2015, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Kim Younghoon, Han Jiawei, Yuan Cangzhou

模型与方法:

特点:

[16]

Spatial topic modeling in online social media for location recommendation

RecSys'13, Hu Bo, Ester Martin

模型与方法:

特点:

GeoSoCa: Exploiting Geographical, Social and Categorical Correlations for Point-of-Interest Recommendations

SIGIR'15 , Zhang Jia-Dong , Chow Chi-Yin

模型与方法:

特点:

参考内容:

Related work

位置预测研究总结

标签(空格分隔): References


What's Your Next Move: User Activity Prediction in Location-based Social Networks

Proceedings of the 2013 SIAM International Conference on Data Mining
Jihang Ye, Zhe Zhu, Hong Cheng

模型与方法:

存在的问题:

Who, Where, When and What: Discover Spatio-Temporal Topics for Twitter Users

KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, Nadia Magnenat-Thalmann

模型与方法:

存在的问题:

When and Where: Predicting Human Movements Based on Social Spatial-Temporal Events

N Yang, X Kong, F Wang, SY Philip - SDM, 2014

模型与方法:

存在的问题:

Regularity and Conformity: Location Prediction Using Heterogeneous Mobility Data

KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
YingziWang,Xing Xie, Nicholas Jing Yuan, Enhong Chen, Defu Lian, Yong Rui

模型与方法:

存在的问题:

CEPR: A Collaborative Exploration and Periodically Returning Model for Location Prediction

ACM Transactions on Intelligent Systems and Technology 2015
Lian Defu, Xie Xing, Zheng Vincent W., Yuan Nicholas Jing, Zhang Fuzheng, Chen Enhong

模型与方法:

存在的问题:

Lifting the Predictability of Human Mobility on Activity Trajectories

2015 IEEE 15th International Conference on Data Mining Workshops
Xianming Li, Defu Lian, Xing Xie and Guangzhong Sun

模型与方法:

存在的问题:

WhereNext: a Location Predictor on Trajectory Pattern Mining

KDD’09, June 28–July 1, 2009, Paris, France.
Anna Monreale, Fabio Pinelli, Roberto Trasarti

模型与方法:

存在的问题:

Mining User Mobility Feature for next place prediction in location-based services

In ICDM, pages 1038–1043. Citeseer, 2012
A. Noulas, S. Scellato, N. Lathia, and C. Mascolo.

模型与方法

存在的问题

Modelling Heterogeneous Location Habits in Human Populations for Location Prediction Under Data Sparsity

UbiComp’13, September 8–12, 2013, Zurich, Switzerland
James McInerney1, Jiangchuan Zheng2, Alex Rogers1, Nicholas R. Jennings1

模型与方法

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注