@Yano
2015-12-30T11:27:03.000000Z
字数 8364
阅读 7103
LeetCode
我的博客:http://blog.csdn.net/yano_nankai
LeetCode题解:https://github.com/LjyYano/LeetCode
LeetCode之Array题目汇总
LeetCode之Hash Table题目汇总
LeetCode之Linked List题目汇总
LeetCode之Math题目汇总
LeetCode之String题目汇总
LeetCode之Binary Search题目汇总
LeetCode之Divide and Conquer题目汇总
LeetCode之Dynamic Programming题目汇总
LeetCode之Backtracing题目汇总
LeetCode之Stack题目汇总
LeetCode之Sort题目汇总
LeetCode之Bit Manipulation题目汇总
LeetCode之Tree题目汇总
LeetCode之Depth-first Search题目汇总
LeetCode之Breadth-first Search题目汇总
LeetCode之Graph题目汇总
LeetCode之Trie题目汇总
LeetCode之Design题目汇总
文章目录:
Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive.
For example, given the range [5, 7], you should return 4.
Credits:
Special thanks to @amrsaqr for adding this problem and creating all test cases.
实质:求m和n二进制编码中,相同的前缀
public int rangeBitwiseAnd(int m, int n) {
int bit = 0;
while (m != n) {
m >>= 1;
n >>= 1;
bit++;
}
return m << bit;
}
参考:LeetCode 169 Majority Element
A Linear Time Majority Vote Algorithm 一个典型的算法,可以在一次遍历,时间复杂度是O(1),空间复杂度是O(1)的情况下完成。
public int majorityElement(int[] nums) {
int m = nums[0];
int c = 1;
for (int i = 1; i < nums.length; i++) {
if (m == nums[i]) {
c++;
} else if (c > 1) {
c--;
} else {
m = nums[i];
}
}
return m;
}
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋
times. The algorithm should run in linear time and in O(1) space.
Hint:
参考:LeetCode 229 Majority Element II
因为题目中说是大于⌊ n/3 ⌋次数的元素,这样的元素最多只能有2个。
public List<Integer> majorityElement(int[] nums) {
List<Integer> rt = new ArrayList<Integer>();
if (nums == null || nums.length == 0) {
return rt;
}
int m1 = nums[0];
int m2 = 0;
int c1 = 1;
int c2 = 0;
for (int i = 1; i < nums.length; i++) {
int x = nums[i];
if (x == m1) {
c1++;
} else if (x == m2) {
c2++;
} else if (c1 == 0) {
m1 = x;
c1 = 1;
} else if (c2 == 0) {
m2 = x;
c2 = 1;
} else {
c1--;
c2--;
}
}
c1 = 0;
c2 = 0;
for (int i = 0; i < nums.length; i++) {
if (m1 == nums[i]) {
c1++;
} else if (m2 == nums[i]) {
c2++;
}
}
if (c1 > nums.length / 3) {
rt.add(m1);
}
if (c2 > nums.length / 3) {
rt.add(m2);
}
return rt;
}
Given an array containing n distinct numbers taken from 0, 1, 2, ..., n
, find the one that is missing from the array.
For example,
Given nums = [0, 1, 3]
return 2
.
Note:
Your algorithm should run in linear runtime complexity. Could you implement it using only constant extra space complexity?
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
参考:LeetCode 268 Missing Number
既然是0~n只差其中一个数,不如再次加入0~n的序列,这样就和LeetCode 136 Single Number一样了,missing number只出现一次,其余都是出现两次。
public int missingNumber(int[] nums) {
int rt = nums.length;
for (int i = 0; i < nums.length; i++) {
rt = rt ^ nums[i] ^ i;
}
return rt;
}
Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also known as the Hamming weight).
For example, the 32-bit integer ’11' has binary representation 00000000000000000000000000001011
, so the function should return 3.
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
1. JDK:int bitCount(int i)
效率肯定高,JDK源码+_+
/**
* Returns the number of one-bits in the two's complement binary
* representation of the specified {@code int} value. This function is
* sometimes referred to as the <i>population count</i>.
*
* @param i the value whose bits are to be counted
* @return the number of one-bits in the two's complement binary
* representation of the specified {@code int} value.
* @since 1.5
*/
public static int bitCount(int i) {
// HD, Figure 5-2
i = i - ((i >>> 1) & 0x55555555);
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
i = (i + (i >>> 4)) & 0x0f0f0f0f;
i = i + (i >>> 8);
i = i + (i >>> 16);
return i & 0x3f;
}
2. 思路
思路一☹:分别判断每一位,有n位就要判断n次。
思路二☺:有几个1就判断几次。参考如何判断一个数是2的n次方?判断i&(i-1)是不是0即可~
public int hammingWeight(int n) {
int rt = 0;
while (n != 0) {
n = n & (n - 1);
rt++;
}
return rt;
}
Given an integer, write a function to determine if it is a power of two.
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
public boolean isPowerOfTwo(int n) {
if (n <= 0) {
return false;
}
return (n & (n - 1)) == 0;
}
All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA.
Write a function to find all the 10-letter-long sequences (substrings) that occur more than once in a DNA molecule.
For example,
Given s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT",
Return:
["AAAAACCCCC", "CCCCCAAAAA"].
考察位图。按位操作,A C G T分别用如下bits表示:
A 00
C 01
G 10
T 11
所以10个连续的字符,只需要20位即可表示,而一个int(32位)就可以表示。定义变量hash,后20位表示字符串序列,其余位数置0 。
定义一个set用来存放已经出现过的hash,计算新hash时,如果已经出现过,就放入结果的set中。
public List<String> findRepeatedDnaSequences(String s) {
if (s == null || s.length() < 11) {
return new ArrayList<String>();
}
int hash = 0;
Set<Integer> appear = new HashSet<Integer>();
Set<String> set = new HashSet<String>();
Map<Character, Integer> map = new HashMap<Character, Integer>();
map.put('A', 0);
map.put('C', 1);
map.put('G', 2);
map.put('T', 3);
for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
hash = (hash << 2) + map.get(c);
hash &= (1 << 20) - 1;
if (i >= 9) {
if (appear.contains(hash)) {
set.add(s.substring(i - 9, i + 1));
} else {
appear.add(hash);
}
}
}
return new ArrayList<String>(set);
}
Reverse bits of a given 32 bits unsigned integer.
For example, given input 43261596 (represented in binary as 00000010100101000001111010011100), return 964176192 (represented in binary as**00111001011110000010100101000000**).
Follow up:
If this function is called many times, how would you optimize it?
Related problem: Reverse Integer
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
JDK :int reverse(int i)
/**
* Returns the value obtained by reversing the order of the bits in the
* two's complement binary representation of the specified {@code int}
* value.
*
* @param i the value to be reversed
* @return the value obtained by reversing order of the bits in the
* specified {@code int} value.
* @since 1.5
*/
public static int reverse(int i) {
// HD, Figure 7-1
i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
i = (i << 24) | ((i & 0xff00) << 8) |
((i >>> 8) & 0xff00) | (i >>> 24);
return i;
}
思路
把第i位取出,放到结果的第31-i位上。
public int reverseBits(int n) {
int rt = 0;
for (int i = 0; i < 32; i++) {
rt |= ((n >> i) & 1) << (31 - i);
}
return rt;
}
Given an array of integers, every element appears twice except for one. Find that single one.
Note:
Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?
对于出现2次的数字,用异或。因为“相异为1”,所以一个数字异或本身为0,而0异或0仍为0, 一个数字异或0仍为这个数字。
0 ^ 0 = 0
n ^ 0 = n
n ^ n = 0
public int singleNumber(int[] nums) {
int n = 0;
for (int i : nums) {
n ^= i;
}
return n;
}
Given an array of integers, every element appears three times except for one. Find that single one.
Note:
Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?
对于数组{1,1,1,2}来说,分析每一位:
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0
……………
0 0 1 3 (位数)
可以分析,分别计算每一位1的出现次数n,如果n%3==1,那么结果中这一位就应该是1。
public int singleNumber(int[] nums) {
int rt = 0, bit = 1;
for (int i = 0; i < 32; i++) {
int count = 0;
for (int v : nums) {
if ((v & bit) != 0) {
count++;
}
}
bit <<= 1;
rt |= (count % 3) << i;
}
return rt;
}
Given an array of numbers nums
, in which exactly two elements appear only once and all the other elements appear exactly twice. Find the two elements that appear only once.
For example:
Given nums = [1, 2, 1, 3, 2, 5]
, return [3, 5]
.
Note:
[5, 3]
is also correct.Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
参考:LeetCode 136 Single Number
参考:LeetCode 137 Single Number II
“相异为1”,所以一个数字异或本身为0,而0异或0仍为0, 一个数字异或0仍为这个数字。
0 ^ 0 = 0
n ^ 0 = n
n ^ n = 0
- 只有两个数a、b分别出现了一次,其余的数都是出现了两次
- 把整个数组异或,结果等于a^b,而a与b是不相等的,所以a^b必不为0
- 按照a^b结果其中一位,把数组分成两个,一组包含a,一组包含b,即问题变成LeetCode 136 Single Number
public int[] singleNumber(int[] nums) {
int[] rt = new int[2];
int n = 0;
for (int v : nums) {
n ^= v;
}
int m = n & (~(n - 1));
for (int v : nums) {
if ((m & v) == 0) {
rt[0] ^= v;
} else {
rt[1] ^= v;
}
}
return rt;
}
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
For example,
If nums = [1,2,2]
, a solution is:
[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
使用二进制,不需要递归。对于二进制中的每一位,0表示不选择,1表示选择。则有2^n种情况。
使用HashSet,能够直接过滤重复情况(先对数组排序,题目中也要求每个list非降序排列)。
public List<List<Integer>> subsetsWithDup(int[] nums) {
if (nums == null) {
return null;
}
if (nums.length == 0) {
return new ArrayList<List<Integer>>();
}
Set<List<Integer>> set = new HashSet<List<Integer>>();
// 题目中要求每个list是非降序,所以要先从小到大排序
Arrays.sort(nums);
// 对于n位,有2^n种情况
for (int i = 0; i < Math.pow(2, nums.length); i++) {
List<Integer> list = new ArrayList<Integer>();
int tmp = i;
// 对于每种情况,分别求得二进制中1的个数
// 0代表不选择,1代表选择
for (int j = 0; j < nums.length; j++) {
int bit = tmp & 1;
tmp >>= 1;
if (bit == 1) {
list.add(nums[j]);
}
}
set.add(list);
}
return new ArrayList<List<Integer>>(set);
}