@Yano
2019-09-20T02:45:51.000000Z
字数 3822
阅读 1848
Java
coding 笔记、点滴记录,以后的文章也会同步到公众号(Coding Insight)中,希望大家关注^_^
https://github.com/LjyYano/Thinking_in_Java_MindMapping

@Testpublic void testLinkedHashMap() {Map<String, Integer> map = new LinkedHashMap<String, Integer>() {@Overrideprotected boolean removeEldestEntry(Map.Entry<String, Integer> eldest) {return size() > 3;}};map.put("1", 1);map.put("2", 2);map.put("3", 3);map.put("4", 4);for(Map.Entry<String, Integer> entry : map.entrySet()) {System.out.println(entry.getKey() + ": " + entry.getValue());}}
输出
2: 23: 34: 4
迭代输出能够保持插入顺序。
LinkedHashMap继承自HashMap,内部额外维护了一个Entry的双向链表,用于记录访问和插入顺序。官方注释:
Hash table and linked list implementation of the Map interface, with predictable iteration order. This implementation differs from HashMap in that it maintains a doubly-linked list running through all of its entries. This linked list defines the iteration ordering, which is normally the order in which keys were inserted into the map (insertion-order). Note that insertion order is not affected if a key is re-inserted into the map.
需要注意:如果某个key已经存在,再次put不会改变插入的顺序。
LinkedHashMap.Entry只是比HashMap.Node多了两个指针而已,LinkedHashMap.Entry直接就是双向链表的元素了。
/*** HashMap.Node subclass for normal LinkedHashMap entries.*/static class Entry<K,V> extends HashMap.Node<K,V> {Entry<K,V> before, after;Entry(int hash, K key, V value, Node<K,V> next) {super(hash, key, value, next);}}/*** The head (eldest) of the doubly linked list.*/transient LinkedHashMap.Entry<K,V> head;/*** The tail (youngest) of the doubly linked list.*/transient LinkedHashMap.Entry<K,V> tail;
HashMap中定义的3个函数:
// Callbacks to allow LinkedHashMap post-actionsvoid afterNodeAccess(Node<K,V> p) { }void afterNodeInsertion(boolean evict) { }void afterNodeRemoval(Node<K,V> p) { }
LinkedHashMap继承于HashMap,重写了这3个函数。这3个函数分别为在访问节点、插入节点、删除节点时做一些事情。
在对LinkedHashMap进行put操作时,执行的是HashMap的put方法,多态调用LinkedHashMap的上述3个函数。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length;if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null);else {Node<K,V> e; K k;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))e = p;else if (p instanceof TreeNode)e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);else {for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1sttreeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;}}if (e != null) { // existing mapping for keyV oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;afterNodeAccess(e);return oldValue;}}++modCount;if (++size > threshold)resize();afterNodeInsertion(evict);return null;}
public V get(Object key) {Node<K,V> e;if ((e = getNode(hash(key), key)) == null)return null;if (accessOrder)afterNodeAccess(e);return e.value;}
可以看到其核心为这3个函数。
void afterNodeAccess(Node<K,V> e) { // move node to lastLinkedHashMap.Entry<K,V> last;if (accessOrder && (last = tail) != e) {LinkedHashMap.Entry<K,V> p =(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;p.after = null;if (b == null)head = a;elseb.after = a;if (a != null)a.before = b;elselast = b;if (last == null)head = p;else {p.before = last;last.after = p;}tail = p;++modCount;}}
void afterNodeInsertion(boolean evict) { // possibly remove eldestLinkedHashMap.Entry<K,V> first;if (evict && (first = head) != null && removeEldestEntry(first)) {K key = first.key;removeNode(hash(key), key, null, false, true);}}
void afterNodeRemoval(Node<K,V> e) { // unlinkLinkedHashMap.Entry<K,V> p =(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;p.before = p.after = null;if (b == null)head = a;elseb.after = a;if (a == null)tail = b;elsea.before = b;}
时间复杂度应该是o(n),其中n为容量。因为put时在找到对应的value后,需要维护双向链表。
现在有一个疑问,LinkedHashMap存在有什么意义?既然要维护一个双向链表,就不可能做到HashMap o(1)的时间复杂度。LinkedHashMap和直接使用双向链表有什么区别?