[关闭]
@Rookie 2017-08-01T22:34:58.000000Z 字数 7767 阅读 1278

张之城的面试题

找工作


1、什么是arc?(arc是为了解决什么问题诞生的?)

首先解释ARC: automatic reference counting自动引用计数。
ARC几个要点:
在对象被创建时 retain count +1,在对象被release时 retain count -1.当retain count 为0 时,销毁对象。
程序中加入autoreleasepool的对象会由系统自动加上autorelease方法,如果该对象引用计数为0,则销毁。
那么ARC是为了解决什么问题诞生的呢?这个得追溯到MRC手动内存管理时代说起。

2、请解释以下keywords的区别: assign vs weak, __block vs __weak

assign适用于基本数据类型,weak是适用于NSObject对象,并且是一个弱引用。

assign适用于基本数据类型,weak是适用于NSObject对象,并且是一个弱引用。

首先__block是用来修饰一个变量,这个变量就可以在block中被修改(参考block实现原理)
__block:使用__block修饰的变量在block代码快中会被retain(ARC下,MRC下不会retain)
__weak:使用__weak修饰的变量不会在block代码块中被retain
同时,在ARC下,要避免block出现循环引用 __weak typedof(self)weakSelf = self;

3、__block在arc和非arc下含义一样吗

是不一样的。
在MRC中__block variable在block中使用是不會retain的
但是ARC中__block則是會Retain的。
取而代之的是用__weak或是__unsafe_unretained來更精確的描述weak reference的目的
其中前者只能在iOS5之後可以使用,但是比較好 (該物件release之後,此pointer會自動設成nil)
而後者是ARC的環境下為了相容4.x的解決方案。
所以上面的範例中


__block MyClass* temp = …; // MRC環境下使用
__weak MyClass* temp = …; // ARC但只支援iOS5.0以上的版本
__unsafe_retained MyClass* temp = …; //ARC且可以相容4.x以後的版本

4、使用nonatomic一定是线程安全的吗

不是的。
- atomic原子操作,系统会为setter方法加锁。 具体使用 @synchronized(self){//code }
- nonatomic不会为setter方法加锁。
- atomic:线程安全,需要消耗大量系统资源来为属性加锁
- nonatomic:非线程安全,适合内存较小的移动设备

5、+(void)load; +(void)initialize;有什么用处

在Objective-C中,runtime会自动调用每个类的两个方法。+load会在类初始加载时调用,+initialize会在第一次调用类的类方法或实例方法之前被调用。这两个方法是可选的,且只有在实现了它们时才会被调用。
共同点:两个方法都只会被调用一次。

6、为什么其他语言里叫函数调用, objective c里则是给对象发消息(或者谈下对runtime的理解)

先来看看怎么理解发送消息的含义:

曾经觉得Objc特别方便上手,面对着 Cocoa 中大量 API,只知道简单的查文档和调用。还记得初学 objective-c 时把[receiver message]当成简单的方法调用,而无视了“发送消息”这句话的深刻含义。于是[receiver message]会被编译器转化为:
objc_msgSend(receiver, selector)
如果消息含有参数,则为:
objc_msgSend(receiver, selector, arg1, arg2, ...)

如果消息的接收者能够找到对应的selector,那么就相当于直接执行了接收者这个对象的特定方法;否则,消息要么被转发,或是临时向接收者动态添加这个selector对应的实现内容,要么就干脆玩完崩溃掉。

现在可以看出[receiver message]真的不是一个简简单单的方法调用。因为这只是在编译阶段确定了要向接收者发送message这条消息,而receive将要如何响应这条消息,那就要看运行时发生的情况来决定了。

Objective-C 的 Runtime 铸就了它动态语言的特性,这些深层次的知识虽然平时写代码用的少一些,但是却是每个 Objc 程序员需要了解的。

Objc Runtime使得C具有了面向对象能力,在程序运行时创建,检查,修改类、对象和它们的方法。可以使用runtime的一系列方法实现。

顺便附上OC中一个类的数据结构 /usr/include/objc/runtime.h

`
struct objc_class {
Class isa OBJC_ISA_AVAILABILITY; //isa指针指向Meta Class,因为Objc的类的本身也是一个Object,为了处理这个关系,r untime就创造了Meta Class,当给类发送[NSObject alloc]这样消息时,实际上是把这个消息发给了Class Object

#if !__OBJC2__
Class super_class OBJC2_UNAVAILABLE; // 父类
const char *name OBJC2_UNAVAILABLE; // 类名
long version OBJC2_UNAVAILABLE; // 类的版本信息,默认为0
long info OBJC2_UNAVAILABLE; // 类信息,供运行期使用的一些位标识
long instance_size OBJC2_UNAVAILABLE; // 该类的实例变量大小
struct objc_ivar_list *ivars OBJC2_UNAVAILABLE; // 该类的成员变量链表
struct objc_method_list **methodLists OBJC2_UNAVAILABLE; // 方法定义的链表
struct objc_cache *cache OBJC2_UNAVAILABLE; // 方法缓存,对象接到一个消息会根据isa指针查找消息对象,这时会在method       Lists中遍历,如果cache了,常用的方法调用时就能够提高调用的效率。
struct objc_protocol_list *protocols OBJC2_UNAVAILABLE; // 协议链表
#endif

} OBJC2_UNAVAILABLE;

OC中一个类的对象实例的数据结构(/usr/include/objc/objc.h):

typedef struct objc_class *Class;

/// Represents an instance of a class.

struct objc_object {

    Class isa  OBJC_ISA_AVAILABILITY;

};

/// A pointer to an instance of a class.

typedef struct objc_object *id;

向object发送消息时,Runtime库会根据object的isa指针找到这个实例object所属于的类,然后在类的方法列表以及父类方法列表寻找对应的方法运行。id是一个objc_object结构类型的指针,这个类型的对象能够转换成任何一种对象。

然后再来看看消息发送的函数:objc_msgSend函数

在引言中已经对objc_msgSend进行了一点介绍,看起来像是objc_msgSend返回了数据,其实objc_msgSend从不返回数据而是你的方法被调用后返回了数据。下面详细叙述下消息发送步骤:

检测这个 selector 是不是要忽略的。比如 Mac OS X 开发,有了垃圾回收就不理会 retain,release 这些函数了。
检测这个 target 是不是 nil 对象。ObjC 的特性是允许对一个 nil 对象执行任何一个方法不会 Crash,因为会被忽略掉。
如果上面两个都过了,那就开始查找这个类的 IMP,先从 cache 里面找,完了找得到就跳到对应的函数去执行。
如果 cache 找不到就找一下方法分发表。
如果分发表找不到就到超类的分发表去找,一直找,直到找到NSObject类为止。
如果还找不到就要开始进入动态方法解析了,后面会提到。

后面还有:
动态方法解析resolveThisMethodDynamically
消息转发forwardingTargetForSelector

详情可参考 http://www.jianshu.com/p/620022378e97

7、什么是method swizzling

Method Swizzling 原理(方法搅拌?)

在Objective-C中调用一个方法,其实是向一个对象发送消息,查找消息的唯一依据是selector的名字。利用Objective-C的动态特性,可以实现在运行时偷换selector对应的方法实现,达到给方法挂钩的目的。
每个类都有一个方法列表,存放着selector的名字和方法实现的映射关系。IMP有点类似函数指针,指向具体的Method实现。

方法指向

我们可以利用 method_exchangeImplementations 来交换2个方法中的IMP,

我们可以利用 class_replaceMethod 来修改类,

我们可以利用 method_setImplementation 来直接设置某个方法的IMP,
……
归根结底,都是偷换了selector的IMP,如下图所示:
方法交换

详情:http://blog.csdn.net/yiyaaixuexi/article/details/9374411

8、http的post和get啥区别

1.GET请求的数据会附在URL之后(就是把数据放置在HTTP协议头中),以?分割URL和传输数据,参数之间以&相连,如:login.action?name=hyddd&password=idontknow&verify=%E4%BD%A0%E5%A5%BD。如果数据是英文字母/数字,原样发送,如果是空格,转换为+,如果是中文/其他字符,则直接把字符串用BASE64加密,得出如:%E4%BD%A0%E5%A5%BD,其中%XX中的XX为该符号以16进制表示的ASCII。
  POST把提交的数据则放置在是HTTP包的包体中。

2.”GET方式提交的数据最多只能是1024字节,理论上POST没有限制,可传较大量的数据,IIS4中最大为80KB,IIS5中为100KB”??!

  以上这句是我从其他文章转过来的,其实这样说是错误的,不准确的:

  (1).首先是”GET方式提交的数据最多只能是1024字节”,因为GET是通过URL提交数据,那么GET可提交的数据量就跟URL的长度有直接关系了。而实际上,URL不存在参数上限的问题,HTTP协议规范没有对URL长度进行限制。这个限制是特定的浏览器及服务器对它的限制。IE对URL长度的限制是2083字节(2K+35)。对于其他浏览器,如Netscape、FireFox等,理论上没有长度限制,其限制取决于操作系统的支持。

  注意这是限制是整个URL长度,而不仅仅是你的参数值数据长度。[见参考资料5]

  (2).理论上讲,POST是没有大小限制的,HTTP协议规范也没有进行大小限制,说“POST数据量存在80K/100K的大小限制”是不准确的,POST数据是没有限制的,起限制作用的是服务器的处理程序的处理能力。

3.在ASP中,服务端获取GET请求参数用Request.QueryString,获取POST请求参数用Request.Form。在JSP中,用request.getParameter(\”XXXX\”)来获取,虽然jsp中也有request.getQueryString()方法,但使用起来比较麻烦,比如:传一个test.jsp?name=hyddd&password=hyddd,用request.getQueryString()得到的是:name=hyddd&password=hyddd。在PHP中,可以用GET和_POST分别获取GET和POST中的数据,而_REQUEST则可以获取GET和POST两种请求中的数据。值得注意的是,JSP中使用request和php中使用_REQUEST都会有隐患,这个下次再写个文章总结。

4.POST的安全性要比GET的安全性高。注意:这里所说的安全性和上面GET提到的“安全”不是同个概念。上面“安全”的含义仅仅是不作数据修改,而这里安全的含义是真正的Security的含义,比如:通过GET提交数据,用户名和密码将明文出现在URL上,因为(1)登录页面有可能被浏览器缓存,(2)其他人查看浏览器的历史纪录,那么别人就可以拿到你的账号和密码了,除此之外,使用GET提交数据还可能会造成Cross-site request forgery攻击。

总结一下,Get是向服务器发索取数据的一种请求,而Post是向服务器提交数据的一种请求,在FORM(表单)中,Method默认为”GET”,实质上,GET和POST只是发送机制不同,并不是一个取一个发!

9、我知道你大学毕业过后就没接触过算法数据结构了,但是请你一定告诉我什么是Binary search tree? search的时间复杂度是多少?

Binary search tree:二叉搜索树。
主要由四个方法:(用C语言实现或者Python)
1.search:时间复杂度为O(h),h为树的高度

2.traversal:时间复杂度为O(n),n为树的总结点数。

3.insert:时间复杂度为O(h),h为树的高度。

4.delete:最坏情况下,时间复杂度为O(h)+指针的移动开销。

可以看到,二叉搜索树的dictionary operation的时间复杂度与树的高度h相关。所以需要尽可能的降低树的高度,由此引出平衡二叉树Balanced binary tree。它要求左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。这样就可以将搜索树的高度尽量减小。常用算法有红黑树、AVL、Treap、伸展树等。

Written with StackEdit.

10、UIKit框架控件之间的继承关系

image_1bm3kcpr6b5h1a9rb0jk5pkct9.png-278.1kB

11、GCD有关问题:dispatch_sync(dispatch_get_main_queue(), ^{NSLog(@"Hello ?");}); 死锁的原因

这里先分清两个概念:Queue 和 Async、Sync。
Queue(队列):队列分为串行和并行。串行队列上面你按照A、B、C、D的顺序添加四个任务,这四个任务按顺序执行,结束顺序也肯定是A、B、C、D。而并行队列上面这四个任务同时执行,完成的顺序是随机的,每次都可能不一样。
Async VS Sync(异步执行和同步执行):使用dispatch_async 调用一个block,这个block会被放到指定的queue队尾等待执行,至于这个block是并行还是串行执行只和dispatch_async参数里面指定的queue是并行和串行有关。但是dispatch_async会马上返回。
使用dispatch_sync 同样也是把block放到指定的queue上面执行,但是会等待这个block执行完毕才会返回,阻塞当前queue直到sync函数返回。
所以队列是串行、并行 和 同步、异步执行调用block是两个完全不一样的概念。
这两个概念清楚了之后就知道为什么死锁了。

分两种情况:
1、当前queue是串行队列。当前queue上调用sync函数,并且sync函数中指定的queue也是当前queue。需要执行的block被放到当前queue的队尾等待执行,因为这是一个串行的queue,
调用sync函数会阻塞当前队列,等待block执行 -> 这个block永远没有机会执行 -> sync函数不返回,所以当前队列就永远被阻塞了,这就造成了死锁。(这就是问题中在主线程调用sync函数,并且在sync函数中传入main_queue作为queue造成死锁的情况)。

2、当前queue是并行队列。
在并行的queue上面调用sync函数,同时传入当前queue作为参数,并不会造成死锁,因为block会马上被执行,所以sync函数也不会一直等待不返回造成死锁。但是在并行队列上调用sync函数传入当前队列作为参数的用法,想不出什么情况下才会这样用。stackoverflow上面有一个针对这种情况的讨论。

12、instrument可以干什么

instrument模板虽多,但我觉得常用的就那几个:

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注