@MilCOS
2017-09-27T04:29:05.000000Z
字数 8516
阅读 815
QMC
The density compressibility. Defi:
Wick 定理
接下来,我写一些我们要测的物理量的格林函数表达式。也摘录下程序中的几段。麻烦学长检查一下表达式...
do i = 1,Nsitedo j = 1,Nsiteg_hop = g_hop - T_hop*free_con(i,j)*( gfun_2nd(j,i,+1)+gfun_2nd(j,i,-1) )end doend do
do i=1,Nsitedo j=1,Nsiteg_hopup = g_hopup - gfun_up_2nd(i,j)*free_con(i,j)*T_hop*N0*2end doend do
do i=1,Nsiteg_onsite = g_onsite + U/2.d0*( 2.d0*gfun_2nd(i,i,+1)*gfun_2nd(i,i,-1) &- gfun_2nd(i,i,+1) - gfun_2nd(i,i,-1) + 1.d0/2.d0 )end do
do i=1,Nsiteg_onsite = g_onsite + U*( (1.d0-gfun_up_2nd(i,i))**2.d0 ) &*Nfavor*(Nfavor-1)/2.d0end do
do i=1,Nsitedo j=1,Nsitedelta = 0.d0if (i == j) delta = 1.d0Scor_11(i,j) = Scor_11(i,j) + (gfun_2nd(i,i,+1) - gfun_2nd(i,i,-1)) * &(gfun_2nd(j,j,+1) - gfun_2nd(j,j,-1)) &+ ( delta-gfun_2nd(j,i,+1) ) * gfun_2nd(i,j,+1) &+ ( delta-gfun_2nd(j,i,-1) ) * gfun_2nd(i,j,-1)Scor_22(i,j) = Scor_11(i,j)Scor_12(i,j) = Scor_12(i,j) + ( delta-gfun_2nd(j,i,+1) ) * gfun_2nd(i,j,-1)Scor_21(i,j) = Scor_21(i,j) + ( delta-gfun_2nd(j,i,-1) ) * gfun_2nd(i,j,+1)end doend do
do i=1,Nsitedo j=1,Nsitedelta = 0.d0if(i.eq.j) delta = 1.d0Scor(j,i) = Scor(j,i) + (delta-gfun_up_2nd(j,i))*gfun_up_2nd(i,j) *3' 注: *3 没有在原程序中,因为他计算的只是Scor_12. '' 注: 指标可能有点错误,应该是Scor(i,j) = Scor(i,j)+ ... 'end doend do
FM = 0.d0call mn_lieb(pn)AF = 0.d0do i = 1, Nsitedo j = 1, NsiteFM = FM + Scor_12(i,j)AF = AF + pn(i)*pn(j)*Scor_12(i,j)end doend do
'm(0)'do i=1,Nsitedo j=1,Nsitesus = sus + Scor(i,j)end doend do'm(Q)'call mn_lieb_(pn)do i=1,Nsitedo j=1,Nsiteafm = afm + pn(i)*pn(j)*Scor(i,j)end doend do
===== System Parameters
total core number 3
Row,Col 3 3
Nsite 27
2N 2
U 4.00000000000000
beta 38.0000000000000
interval 1900
p0 10
===== ===== ====== ======
| items | charge channel | spin channel |
|---|---|---|
| local magnetic moment (with err) | 0.789 0.003 | 0.787 0.001 |
| Kinetic energy (with err) | -1.084 0.002 | -1.084 0.003 |
| Total energy (with bar) | -0.664 0.005 | -1.659 0.001 + U/4 |
| m(0) (with err) | 0.63 0.01 | 0.81 0.04 *HERE |
| m(Q) (with err) | 2.23 0.02 | 2.90 0.09 *HERE |
.
.
.
.
.
.
1
就是。
那和由的定义里都是对一个基态的本征值,所以是相同的?
然后里是对所有格点求和,设原胞数是,那是个双粒子算符;而只是个单粒子算符啊,怎么相等的。
2
的对应是说i格点的自旋完全由处于vacancy引入的零能态的电子决定,那不在零能态的电子没有贡献吗?
3
S 对称性。里的定义,,求出是