@BruceWang
2018-07-09T21:30:46.000000Z
字数 73033
阅读 2580
课题
python程序使用的packages,以及程序需求。
######
# -*- coding: utf-8 -*-
"""
Created on Fri May 4 10:54:49 2018
@author: Wang
platform: win_10_x64
"""
######
absl-py 0.2.0
astor 0.6.2
audioread 2.1.5
bleach 1.5.0
certifi 2016.2.28
cycler 0.10.0
decorator 4.3.0
Django 2.0.4
enum34 1.1.6
gast 0.2.0
grpcio 1.11.0
html5lib 0.9999999
icu 57.1
image 1.5.20
joblib 0.11
jpeg 9b
Keras 2.1.2
libpng 1.6.30
librosa 0.6.0
llvmlite 0.23.0
Markdown 2.6.10
matplotlib 2.0.2
mkl 2017.0.3
numba 0.38.0
numpy 1.13.1
numpy 1.13.3
opencv-python 3.4.1
openssl 1.0.2l
pandas 0.20.3
Pillow 5.1.0
pip 9.0.1
pip 10.0.1
protobuf 3.5.1
pyparsing 2.2.0
pyqt 5.6.0
pyreadline 2.1
python 3.5.4
python-dateutil 2.6.1
pytz 2017.2
PyYAML 3.12
qt 5.6.2
resampy 0.2.0
scikit-learn 0.19.0
scikit-learn 0.19.1
scipy 0.19.1
setuptools 38.2.5
setuptools 36.4.0
sip 4.18
six 1.10.0
six 1.11.0
tensorboard 1.8.0
tensorflow 1.8.0
tensorflow-gpu 1.4.0
tensorflow-tensorboard 0.4.0rc3
termcolor 1.1.0
tk 8.5.18
vc 14
vs2015_runtime 14.0.25420
Werkzeug 0.13
wheel 0.30.0
wheel 0.29.0
wincertstore 0.2
zlib
文件读取和说明;以及核心packages安装说明。
# -*- coding: utf-8 -*-
"""
notepad++ Editor
"""
# pydub 需要用到的模块
# pydub 安装教程:https://blog.csdn.net/qq_25883823/article/details/52749279
# github_API:https://github.com/jiaaro/pydub/blob/master/API.markdown
# 中文说明:https://blog.csdn.net/tyfbhlxd/article/details/72046552
# 数据链接:https://bhichallenge.med.auth.gr/ 我使用的是第110个数据
from pydub import AudioSegment
import os, re
wav_path = r"C:\Users\aixin\Desktop\lungsound\LungSoundFromICBHIchallenge\ICBHI_final_database\110_1p1_Al_sc_Meditron.wav"
txt_path = r"C:\Users\aixin\Desktop\lungsound\LungSoundFromICBHIchallenge\ICBHI_final_database\110_1p1_Al_sc_Meditron.txt"
save_path = r"C:\Users\aixin\Desktop\lungsound\LungSoundFromICBHIchallenge\database_segmentation"
wav = AudioSegment.from_wav(wav_path)
filename_wav = os.listdir(root_wav_path)
filename_txt = os.listdir(root_txt_path)
# 得到音频基本信息
################################################################################
from pydub import AudioSegment
# sound = AudioSegment.from_file("sound1.wav")
# loudness = sound.dBFS
# 取得音频文件音量分贝数
# channel_count = sound.channels
# 取得音频文件声道数
# bytes_per_sample = sound.sample_width
# 取得音频文件采样宽度
# frames_per_second = sound.frame_rate
# 取得音频文件采样频率
# loudness = sound.rms
# 获取音频音量大小,该值通常用来计算分贝数(dB= 20×lgX)
# assert sound.duration_seconds == (len(sound) / 1000.0)
# 取得音频的持续时间,同 len()
# number_of_frames_in_sound = sound.frame_count()
# number_of_frames_in_200ms_of_sound = sound.frame_count(ms=200)
# 取得音频的frame数量
################################################################################
'''
with open(txt_path,'r') as f:
tag_00 = 0
tag_11 = 0
lines = f.readlines()
print(type(lines)) # list
for line in lines:
t = [float(i) for i in line.strip().split('\t')]
ts = [round(i*1000) for i in t] # 转换成毫秒, pydub中的标准时间为毫秒
if ts[2:] == [0, 0]:
# print(ts)
part1 = wav[ts[0]:ts[1]] # 把标签是0,0的切割出来
tag_00 += part1
else:
print(ts)
part2 = wav[ts[0]:ts[1]]
tag_11 += part2
print(tag_00)
print(type(tag_00))
print(tag_00.shape)
tag_00.export(save_path + "\\" + str(wav_name) + '_' + str('00') + '.wav', format="wav")
tag_11.export(save_path + "\\" + str(wav_name) + '_' + str('11') + '.wav', format="wav")
'''
'''
# default 100 ms crossfade
combined = sound1.append(sound2)
# 5000 ms crossfade
combined_with_5_sec_crossfade = sound1.append(sound2, crossfade=5000)
# no crossfade
no_crossfade1 = sound1.append(sound2, crossfade=0)
root_path = r"C:\Users\aixin\Desktop\lungsound\LungSoundFromICBHIchallenge\ICBHI_final_database"
i = 0
for each in os.listdir(root_path):
filename_wav = re.findall(r"(.*?)\.wav", each)
# filename_txt = re.findall(r"(.*?)\.txt", each)
if filename_wav:
print(filename_wav)
i += 1
print(i)
# if filename_wav == filename_txt:
# print(filename_wav)
# print(filename_txt)
# else:
# print("there is some filenames are not compitable")
# 最后的每一个文件保存的应该有两个位置:
# 这里的00代表一种病也没的,11代表其他的;
# 我不想分成四类了,只要两类搞定了,四类我肯定也会的。
# save_path + each_filename + str("00") + '.wav'
# save_path + each_filename + str("11") + '.wav'
'''
#------------------------------------------------------------------------------#
数据预处理,生成训练数据,得到数据和标签文件,结构化数据。
###############################################################################
# 预备函数
def endWith(*endstring):
ends = endstring
def run(s):
f = map(s.endswith,ends)
if True in f: return s
return run
def lss_seg(wav_path,wav_name):
lung_sound = AudioSegment.from_file(wav_path)
five_seconds = 5 * 1000
ten_seconds = 10 * 1000
fi = lung_sound[:ten_seconds]
mi = lung_sound[five_seconds:ten_seconds]
la = lung_sound[-five_seconds:]
fi.export(seg_path+'\\'+ wav_name[:-4] + '_'+ 'fi.wav', format="wav")
mi.export(seg_path+'\\'+ wav_name[:-4] + '_'+ 'mi.wav', format="wav")
la.export(seg_path+'\\'+ wav_name[:-4] + '_'+ 'la.wav', format="wav")
# fi.export(seg_path+'\\'+ wav_name[:-4] + '_'+ 'fi.wav', format="wav")
# mi.export(seg_path+'\\'+ wav_name[:-4] + '_'+ 'mi.wav', format="wav")
# la.export(seg_path+'\\'+ wav_name[:-4] + '_'+ 'la.wav', format="wav")
def get_wavedata(wav_name):
f = wave.open(filepath+'\\'+wav_name,'rb')
params = f.getparams()
nchannels, sampwidth, framerate, nframes = params[:4]
strData = f.readframes(nframes)
#读取音频,字符串格式
waveData = np.fromstring(strData,dtype=np.int16)
#将字符串转化为int
waveData = waveData*1.0/(max(abs(waveData)))
#wave幅值归一化
waveData = np.reshape(waveData,[nframes,nchannels]).T
f.close()
return waveData, framerate
def save_new_img(spec_path):
fig = plt.figure()
fig.set_size_inches(0.5, 0.5)
plt.axis('off') # no axis
plt.axes([0., 0., 1., 1.], frameon=False, xticks=[], yticks=[]) # Remove the white edge
plt.specgram(waveData[0],Fs = framerate, scale_by_freq = True, sides = 'default')
plt.savefig(spec_path, bbox_inches=None, pad_inches=0)
plt.close()
#################################################################################
for f in files:
if not f.endswith('.mp3'):
# Skip any non-MP3 files
continue
mp3_file = os.path.join(path, f)
#################################################################################
import os, re
import wave
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from pydub import AudioSegment
#################################################################################
## 读取频谱图数据--得到X, y, numpy数据
image_base_path = r"C:\Users\aixin\Desktop\lungsound\LSS_seg_img"
filenames= os.listdir(image_base_path)
img0 = mpimg.imread(image_base_path +'\\'+ filenames[0])
img0 = np.expand_dims(img0,axis=0)
print("开始将图片转为数组")
label = []
i = 0
j = 0
k = 0
for jpg_name in filenames:
print(jpg_name)
if jpg_name.startswith('0_'):
print(jpg_name)
print('00000000000000000000')
i = i+1
label.append(0)
else:
print(jpg_name)
print('11111111111111111111')
j = j+1
label.append(1)
img = mpimg.imread(image_base_path +'\\'+ jpg_name)
img = np.expand_dims(img,axis=0)
X = np.concatenate((img0,img),axis=0)
img0 = X
k = k+1
X_path = r"C:\Users\aixin\Desktop\lungsound\LSS_x_y\X.npy"
np.save(X_path, X)
yarray = np.array(label)
y_path = r"C:\Users\aixin\Desktop\lungsound\LSS_x_y\y.npy"
np.save(y_path, yarray)
###############################################################################
## 读取5秒音频文件--生成频谱图--保存成无白边的jpg图像格式
filepath = r"C:\Users\aixin\Desktop\lungsound\LSS_seg"
save_path = r"C:\Users\aixin\Desktop\lungsound\LSS_seg_img"
filenames= os.listdir(filepath)
#得到文件夹下的所有文件名称
i = 0
j = 0
a = endWith('.wav')
f_file = filter(a,filenames)
for wav_name in f_file:
print(wav_name)
waveData,framerate = get_wavedata(wav_name)
if re.findall(r'正常',wav_name):
print(wav_name)
if re.findall(r'_fi',wav_name):
spec_path0_fi = save_path+'\\'+ '0_' + str(i) + '_fi' + '.jpg'
save_new_img(spec_path0_fi)
elif re.findall(r'_mi',wav_name):
spec_path0_mi = save_path+'\\'+ '0_' + str(i) + '_mi' + '.jpg'
save_new_img(spec_path0_mi)
else:
spec_path0_la = save_path+'\\'+ '0_' + str(i) + '_la' + '.jpg'
save_new_img(spec_path0_la)
i = i+1
else:
print(wav_name)
if re.findall(r'_fi',wav_name):
spec_path1_fi = save_path+'\\'+ '1_' + str(j) + '_fi' + '.jpg'
save_new_img(spec_path1_fi)
elif re.findall(r'_mi',wav_name):
spec_path1_mi = save_path+'\\'+ '1_' + str(j) + '_mi' + '.jpg'
save_new_img(spec_path1_mi)
else:
spec_path1_la = save_path+'\\'+ '1_' + str(j) + '_la' + '.jpg'
save_new_img(spec_path1_la)
j = j+1
print('len of filenames:', len(filenames))
#############################################################################
## 重新分数据,5秒一个数据集,原来是15秒长度,如:现在是原来数据的3倍、
filepath = r"C:\Users\aixin\Desktop\lungsound\LSS_Nname_545_both"
seg_path = r"C:\Users\aixin\Desktop\lungsound\LSS_seg"
filenames = os.listdir(filepath)
a = endWith('.wav')
f_file = filter(a,filenames)
for wav_name in f_file:
print(wav_name)
wav_path = filepath + '\\' + wav_name
lss_seg(wav_path,wav_name)
######################################################################
# 读取频谱图数据--得到 x,y, numpy数据
import os,re
import cv2
import matplotlib.image as mpimg
import numpy as np
image_base_path = r"C:\Users\aixin\Desktop\lungsound\minst_fake"
filenames= os.listdir(image_base_path)
n = filenames.__len__()
# 获取图片的个数
print("开始将图片转为数组")
l = []
label = []
i = 0
j = 0
k = 0
for jpg_name in filenames:
# img = cv2.imread(image_base_path +'\\'+ filenames[k])
img = mpimg.imread(image_base_path +'\\'+ filenames[k])
l.append(img)
if re.findall(r'0_',jpg_name):
print(jpg_name)
i = i+1
label.append(0)
else:
print(jpg_name)
j = j+1
label.append(1)
print(k)
k = k+1
Xarray = np.array(l)
X_path = r"C:\Users\aixin\Desktop\lungsound\minst_fake\X.npy"
np.save(X_path, Xarray)
yarray = np.array(label)
y_path = r"C:\Users\aixin\Desktop\lungsound\minst_fake\y.npy"
np.save(y_path, yarray)
# 图像先升维,然后合并
a = np.expand_dims(np.random.randint(2,size=(2,3)), axis=0)
b = np.expand_dims(np.random.randint(2,size=(2,3)), axis=0)
c = np.concatenate((a,b),axis=0)
#
########################################################################
# 读取频谱图数据--得到y, numpy数据
filepath = r"C:\Users\aixin\Desktop\lungsound\LSS"
filenames = os.listdir(filepath)
a = endWith('.jpg')
f_file = filter(a,filenames)
i = 0
j = 0
label = []
for jpg_name in f_file:
if re.findall(r'0_',jpg_name):
print(jpg_name)
i = i+1
label.append(0)
else:
print(jpg_name)
j = j+1
label.append(1)
y_label = np.array(label)
print(label)
label_path = r"C:\Users\aixin\Desktop\lungsound\LSS\label.npy"
np.save(label_path, y_label)
########################################################################
########################## 以下部分使用待定 ############################
########################## 以下部分使用待定 ############################
########################################################################
# 读取音频文件--保存图像数据,并且切割成正方形
import os, re
import cv2
import wave
import matplotlib.pyplot as plt
import numpy as np
filepath = r"C:\Users\aixin\Desktop\lungsound\LSS"
filenames= os.listdir(filepath)
#得到文件夹下的所有文件名称
i = 0
j = 0
a = endWith('.wav')
f_file = filter(a,filenames)
for wav_name in f_file:
print(wav_name)
waveData,framerate = get_wavedata(wav_name)
if re.findall(r'正常',wav_name):
print(wav_name)
spec_path0 = filepath+'\\'+ '0_' + str(i) + '.jpg'
i = i+1
save_img(spec_path0)
else:
spec_path1 = filepath+'\\'+ '1_' + str(j) + '.jpg'
j = j+1
save_img(spec_path1)
filepath = r"C:\Users\aixin\Desktop\lungsound\LSS"
filenames = os.listdir(filepath)
a = endWith('.jpg')
f_file = filter(a,filenames)
for jpg_name in f_file:
print(jpg_name)
save_cropped_img(filepath+'\\'+jpg_name, filepath+'\\'+jpg_name)
############################################################################
# 画语谱图
# 获取音频信息:Wave_read.getparams用法:
import wave
import matplotlib.pyplot as plt
import numpy as np
import os
wav_path = r"C:\Users\aixin\Desktop\lungsound\LSS\FT___鼾音__李庆_男_74_000_000_现在吸烟_26_20150418101410_000163_025.wav"
filepath = r"C:\Users\aixin\Desktop\lungsound\LSS"
filenames= os.listdir(filepath) #得到文件夹下的所有文件名称
# f = wave.open(filepath+'\\' + filenames[1],'rb')
f = wave.open(wav_path,'rb')
params = f.getparams()
nchannels, sampwidth, framerate, nframes = params[:4]
strData = f.readframes(nframes)#读取音频,字符串格式
waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为int
waveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化
waveData = np.reshape(waveData,[nframes,nchannels]).T
f.close()
# plot the wave
spec_path = filepath+'\\'+ '0000000000000000' + '.jpg'
plt.specgram(waveData[0],Fs = framerate, scale_by_freq = True, sides = 'default')
# plt.axis('tight')
plt.axis('off')
plt.savefig(spec_path, dpi=100)
# plt.savefig(spec_path, dpi=80)
# plt.savefig(spec_path, dpi=50)
############################################################################
import audiosegment
print("Reading in the wave file...")
seg = audiosegment.from_file(filename)
print("Information:")
print("Channels:", seg.channels)
print("Bits per sample:", seg.sample_width * 8)
print("Sampling frequency:", seg.frame_rate)
print("Length:", seg.duration_seconds, "seconds")
#
freqs, times, amplitudes = seg.spectrogram(window_length_s=0.03, overlap=0.5)
amplitudes = 10 * np.log10(amplitudes + 1e-9)
# Plot
plt.pcolormesh(times, freqs, amplitudes)
plt.xlabel("Time in Seconds")
plt.ylabel("Frequency in Hz")
plt.show()
CNN模型训练、测试、集成
# Some code was borrowed from
# https://github.com/petewarden/tensorflow_makefile/blob/master/tensorflow/models/image/mnist/convolutional.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy
import tensorflow as tf
import tensorflow.contrib.slim as slim
import ls_data
import cnn_model
MODEL_DIRECTORY = "model/model.ckpt"
LOGS_DIRECTORY = "logs/train"
# Params for Train
training_epochs = 10# 10 for augmented training data, 20 for training data
TRAIN_BATCH_SIZE = 50
display_step = 100
validation_step = 500
# Params for test
TEST_BATCH_SIZE = 5000
def train():
# Some parameters
batch_size = TRAIN_BATCH_SIZE
num_labels = ls_data.NUM_LABELS
# Prepare ls_data data
train_total_data, train_size, validation_data, validation_labels, test_data, test_labels = ls_data.prepare_ls_data(True)
# Boolean for MODE of train or test
is_training = tf.placeholder(tf.bool, name='MODE')
# tf Graph input
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 2]) #answer
# Predict
y = cnn_model.CNN(x)
# Get loss of model
with tf.name_scope("LOSS"):
loss = slim.losses.softmax_cross_entropy(y,y_)
# loss = slim.losses.softmax_cross_entropy(y,y_)
#########
# Create a summary to monitor loss tensor
tf.scalar_summary('loss', loss)
# Define optimizer
with tf.name_scope("ADAM"):
# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0)
# batch = tf.Variable(0)
# batch = tf.Variable(0)
# batch = tf.Variable(0)
learning_rate = tf.train.exponential_decay(
1e-4, # Base learning rate.
batch * batch_size, # Current index into the dataset.
train_size, # Decay step.
0.95, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss,global_step=batch)
# Create a summary to monitor learning_rate tensor
tf.scalar_summary('learning_rate', learning_rate)
# Get accuracy of model
with tf.name_scope("ACC"):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# none
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# Create a summary to monitor accuracy tensor
tf.scalar_summary('acc', accuracy)
# Merge all summaries into a single op
merged_summary_op = tf.merge_all_summaries()
# Add ops to save and restore all the variables
saver = tf.train.Saver()
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer(), feed_dict={is_training: True})
# sess.run(tf.global_variables_initializer(), feed_dict={is_training: True})
# sess.run(tf.global_variables_initializer(), feed_dict={is_training: True})
# sess.run(tf.global_variables_initializer(), feed_dict={is_training: True})
# Training cycle
total_batch = int(train_size / batch_size)
# op to write logs to Tensorboard
summary_writer = tf.train.SummaryWriter(LOGS_DIRECTORY, graph=tf.get_default_graph())
# Save the maximum accuracy value for validation data
max_acc = 0.
# Loop for epoch
for epoch in range(training_epochs):
# Random shuffling
numpy.random.shuffle(train_total_data)
train_data_ = train_total_data[:, :-num_labels]
train_labels_ = train_total_data[:, -num_labels:]
# Loop over all batches
for i in range(total_batch):
# Compute the offset of the current minibatch in the data.
offset = (i * batch_size) % (train_size)
batch_xs = train_data_[offset:(offset + batch_size), :]
batch_ys = train_labels_[offset:(offset + batch_size), :]
# Run optimization op (backprop), loss op (to get loss value)
# and summary nodes
_, train_accuracy, summary = sess.run([train_step, accuracy, merged_summary_op] , feed_dict={x: batch_xs, y_: batch_ys, is_training: True})
# Write logs at every iteration
summary_writer.add_summary(summary, epoch * total_batch + i)
# Display logs
if i % display_step == 0:
print("Epoch:", '%04d,' % (epoch + 1),
"batch_index %4d/%4d, training accuracy %.5f" % (i, total_batch, train_accuracy))
# Get accuracy for validation data
if i % validation_step == 0:
# Calculate accuracy
validation_accuracy = sess.run(accuracy,
feed_dict={x: validation_data, y_: validation_labels, is_training: False})
print("Epoch:", '%04d,' % (epoch + 1),
"batch_index %4d/%4d, validation accuracy %.5f" % (i, total_batch, validation_accuracy))
# Save the current model if the maximum accuracy is updated
if validation_accuracy > max_acc:
max_acc = validation_accuracy
save_path = saver.save(sess, MODEL_DIRECTORY)
print("Model updated and saved in file: %s" % save_path)
print("Optimization Finished!")
# Restore variables from disk
saver.restore(sess, MODEL_DIRECTORY)
# Calculate accuracy for all ls_data test images
test_size = test_labels.shape[0]
batch_size = TEST_BATCH_SIZE
total_batch = int(test_size / batch_size)
acc_buffer = []
# Loop over all batches
for i in range(total_batch):
# Compute the offset of the current minibatch in the data.
offset = (i * batch_size) % (test_size)
batch_xs = test_data[offset:(offset + batch_size), :]
batch_ys = test_labels[offset:(offset + batch_size), :]
y_final = sess.run(y, feed_dict={x: batch_xs, y_: batch_ys, is_training: False})
correct_prediction = numpy.equal(numpy.argmax(y_final, 1), numpy.argmax(batch_ys, 1))
acc_buffer.append(numpy.sum(correct_prediction) / batch_size)
print("test accuracy for the stored model: %g" % numpy.mean(acc_buffer))
if __name__ == '__main__':
train()
# Some code was borrowed from
# https://github.com/petewarden/tensorflow_makefile/blob/master/tensorflow/models/image/mnist/convolutional.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import tensorflow.contrib.slim as slim
# Create model of CNN with slim api
def CNN(inputs, is_training=True):
batch_norm_params = {'is_training': is_training, 'decay': 0.9, 'updates_collections': None}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
x = tf.reshape(inputs, [-1, 28, 28, 1])
# For slim.conv2d, default argument values are like
# normalizer_fn = None, normalizer_params = None, <== slim.arg_scope changes these arguments
# padding='SAME', activation_fn=nn.relu,
# weights_initializer = initializers.xavier_initializer(),
# biases_initializer = init_ops.zeros_initializer,
net = slim.conv2d(x, 32, [5, 5], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.conv2d(net, 64, [5, 5], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.flatten(net, scope='flatten3')
# For slim.fully_connected, default argument values are like
# activation_fn = nn.relu,
# normalizer_fn = None, normalizer_params = None, <== slim.arg_scope changes these arguments
# weights_initializer = initializers.xavier_initializer(),
# biases_initializer = init_ops.zeros_initializer,
net = slim.fully_connected(net, 1024, scope='fc3')
net = slim.dropout(net, is_training=is_training, scope='dropout3')
# 0.5 by default
outputs = slim.fully_connected(net, 10, activation_fn=None, normalizer_fn=None, scope='fco')
return outputs
# Some code was borrowed from https://github.com/petewarden/tensorflow_makefile/blob/master/tensorflow/models/image/mnist/convolutional.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy
import os
import tensorflow as tf
import tensorflow.contrib.slim as slim
import ls_data
import cnn_model
# user input
from argparse import ArgumentParser
# refernce argument values
MODEL_DIRECTORY = "model"
TEST_BATCH_SIZE = 5000
ENSEMBLE = True
# build parser
def build_parser():
parser = ArgumentParser()
parser.add_argument('--model-dir',
dest='model_directory', help='directory where model to be tested is stored',
metavar='MODEL_DIRECTORY', required=True)
parser.add_argument('--batch-size', type=int,
dest='batch_size', help='batch size for test',
metavar='TEST_BATCH_SIZE', required=True)
parser.add_argument('--use-ensemble',
dest='ensemble', help='boolean for usage of ensemble',
metavar='ENSEMBLE', required=True)
return parser
# test with test data given by ls_data.py
def test(model_directory, batch_size):
# Import data
PIXEL_DEPTH = ls_data.PIXEL_DEPTH
ls = input_data.read_data_sets('data/', one_hot=True)
is_training = tf.placeholder(tf.bool, name='MODE')
# tf Graph input
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 2]) # answer
y = cnn_model.CNN(x, is_training=is_training)
# Add ops to save and restore all the variables
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer(), feed_dict={is_training: True})
# Restore variables from disk
saver = tf.train.Saver()
# Calculate accuracy for all ls_data test images
test_size = ls.test.num_examples
total_batch = int(test_size / batch_size)
saver.restore(sess, model_directory)
acc_buffer = []
# Loop over all batches
for i in range(total_batch):
batch = ls.test.next_batch(batch_size)
batch_xs = (batch[0] - (PIXEL_DEPTH / 2.0) / PIXEL_DEPTH) # make zero-centered distribution as in ls_data.extract_data()
batch_ys = batch[1]
y_final = sess.run(y, feed_dict={x: batch_xs, y_: batch_ys, is_training: False})
correct_prediction = numpy.equal(numpy.argmax(y_final, 1), numpy.argmax(batch_ys, 1))
acc_buffer.append(numpy.sum(correct_prediction) / batch_size)
print("test accuracy for the stored model: %g" % numpy.mean(acc_buffer))
# test with test data given by ls_data.py
def test_org(model_directory, batch_size):
# Import data
PIXEL_DEPTH = ls_data.PIXEL_DEPTH
train_total_data, train_size, validation_data, validation_labels, test_data, test_labels = ls_data.prepare_ls_data(
False)
is_training = tf.placeholder(tf.bool, name='MODE')
# tf Graph input
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 2]) # answer
y = cnn_model.CNN(x, is_training=is_training)
# Add ops to save and restore all the variables
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer(), feed_dict={is_training: True})
# Restore variables from disk
saver = tf.train.Saver()
# Calculate accuracy for all ls_data test images
test_size = test_labels.shape[0]
total_batch = int(test_size / batch_size)
saver.restore(sess, model_directory)
acc_buffer = []
# Loop over all batches
for i in range(total_batch):
# Compute the offset of the current minibatch in the data.
offset = (i * batch_size) % (test_size)
batch_xs = test_data[offset:(offset + batch_size), :]
batch_ys = test_labels[offset:(offset + batch_size), :]
y_final = sess.run(y, feed_dict={x: batch_xs, y_: batch_ys, is_training: False})
correct_prediction = numpy.equal(numpy.argmax(y_final, 1), numpy.argmax(batch_ys, 1))
acc_buffer.append(numpy.sum(correct_prediction) / batch_size)
print("test accuracy for the stored model: %g" % numpy.mean(acc_buffer))
# For a given matrix, each row is converted into a one-hot row vector
def one_hot_matrix(a):
a_ = numpy.zeros_like(a)
for i, j in zip(numpy.arange(a.shape[0]), numpy.argmax(a, 1)): a_[i, j] = 1
return a_
# test with test data given by ls_data.py
def test_ensemble(model_directory_list, batch_size):
# Import data
PIXEL_DEPTH = ls_data.PIXEL_DEPTH
ls = input_data.read_data_sets('data/', one_hot=True)
is_training = tf.placeholder(tf.bool, name='MODE')
# tf Graph input
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 2]) # answer
y = cnn_model.CNN(x, is_training=is_training)
# Add ops to save and restore all the variables
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer(), feed_dict={is_training: True})
# Restore variables from disk
saver = tf.train.Saver()
# Calculate accuracy for all ls_data test images
test_size = ls.test.num_examples
total_batch = int(test_size / batch_size)
acc_buffer = []
# Loop over all batches
for i in range(total_batch):
batch = ls.test.next_batch(batch_size)
batch_xs = (batch[0] - (PIXEL_DEPTH / 2.0) / PIXEL_DEPTH) # make zero-centered distribution as in ls_data.extract_data()
batch_ys = batch[1]
y_final = numpy.zeros_like(batch_ys)
for dir in model_directory_list:
saver.restore(sess, dir+'/model.ckpt')
pred = sess.run(y, feed_dict={x: batch_xs, y_: batch_ys, is_training: False})
y_final += one_hot_matrix(pred)
# take a majority vote as an answer
# note
correct_prediction = numpy.equal(numpy.argmax(y_final, 1), numpy.argmax(batch_ys, 1))
acc_buffer.append(numpy.sum(correct_prediction) / batch_size)
print("test accuracy for the stored model: %g" % numpy.mean(acc_buffer))
if __name__ == '__main__':
# Parse argument
parser = build_parser()
options = parser.parse_args()
ensemble = options.ensemble
model_directory = options.model_directory
batch_size = options.batch_size
# Select ensemble test or a single model test
if ensemble=='True': # use ensemble model
model_directory_list = [x[0] for x in os.walk(model_directory)]
test_ensemble(model_directory_list[1:], batch_size)
else: # test a single model
# test_org(model_directory,
# batch_size) #test with test data given by ls_data.py
test(model_directory+'/model.ckpt',
batch_size) # test with test data given by tensorflow.examples.tutorials.ls.input_data()
# Some code was borrowed from
# https://github.com/petewarden/tensorflow_makefile/blob/master/tensorflow/models/image/2/convolutional.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import numpy
from scipy import ndimage
from six.moves import urllib
from sklearn.model_selection import train_test_split
import tensorflow as tf
DATA_DIRECTORY = "data"
# Params for ls_data
IMAGE_SIZE = 28
NUM_CHANNELS = 1
PIXEL_DEPTH = 255
NUM_LABELS = 2
VALIDATION_SIZE = 5000 # Size of the validation set.
#########################
# Extract the images
def extract_data(filename, num_images):
"""Extract the images into a 4D tensor [image index, y, x, channels].
Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS)
data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)
data = numpy.reshape(data, [num_images, -1])
return data
# Extract the labels
def extract_labels(filename, num_images):
"""Extract the labels into a vector of int64 label IDs."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_images)
labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
num_labels_data = len(labels)
one_hot_encoding = numpy.zeros((num_labels_data,NUM_LABELS))
one_hot_encoding[numpy.arange(num_labels_data),labels] = 1
one_hot_encoding = numpy.reshape(one_hot_encoding, [-1, NUM_LABELS])
return one_hot_encoding
# Augment training data
def expend_training_data(images, labels):
expanded_images = []
expanded_labels = []
j = 0 # counter
for x, y in zip(images, labels):
j = j+1
if j%100==0:
print ('expanding data : %03d / %03d' % (j,numpy.size(images,0)))
# register original data
expanded_images.append(x)
expanded_labels.append(y)
# get a value for the background
# zero is the expected value,
# but median() is used to estimate background's value
bg_value = numpy.median(x)
# this is regarded as background's value
image = numpy.reshape(x, (-1, 28))
for i in range(4):
# rotate the image with random degree
angle = numpy.random.randint(-15,15,1)
new_img = ndimage.rotate(image,angle,reshape=False, cval=bg_value)
# shift the image with random distance
shift = numpy.random.randint(-2, 2, 2)
new_img_ = ndimage.shift(new_img,shift, cval=bg_value)
# register new training data
expanded_images.append(numpy.reshape(new_img_, 784))
expanded_labels.append(y)
# images and labels are concatenated
# for random-shuffle at each epoch
# notice that pair of image
# and label should not be broken
expanded_train_total_data = numpy.concatenate((expanded_images, expanded_labels), axis=1)
numpy.random.shuffle(expanded_train_total_data)
return expanded_train_total_data
# Prepare data
def prepare_ls_data(use_data_augmentation=True):
# Get the data.
X = np.load(r"C:\Users\aixin\Desktop\lungsound\LSS_x_y\X.npy")
y = np.load(r"C:\Users\aixin\Desktop\lungsound\LSS_x_y\y.npy")
X = X[:-1]
y = y[:-1]
print('Cutted data shape: ', X.shape)
print('Cutted data shape: ', y.shape)
'''
Cutted data shape: (230, 36, 36, 3)
Cutted data shape: (230,)
'''
################################################################################
# 避免过拟合,采用交叉验证
# 验证集占训练集30%,固定随机种子(random_state)
train_data , train_labels, test_data ,test_labels
= train_test_split(X, y,test_size=0.302, random_state=40)
# As a sanity check,
# we print out the size of the training and test data.
print('Training data shape: ', train_data.shape)
print('Training labels shape: ', train_labels.shape)
print('Test data shape: ', test_data.shape)
print('Test labels shape: ', test_labels.shape)
################################################################################
# Split the data into train, val, and test sets. In addition we will
# create a small development set as a subset of the training data;
# we can use this for development so our code runs faster.
# Generate a validation set.
validation_data = train_data[:VALIDATION_SIZE, :]
validation_labels = train_labels[:VALIDATION_SIZE,:]
train_data = train_data[VALIDATION_SIZE:, :]
train_labels = train_labels[VALIDATION_SIZE:,:]
# Concatenate train_data & train_labels for random shuffle
if use_data_augmentation:
train_total_data = expend_training_data(train_data, train_labels)
else:
train_total_data = numpy.concatenate((train_data, train_labels), axis=1)
train_size = train_total_data.shape[0]
return train_total_data, train_size, validation_data, validation_labels, test_data, test_labels
卷积结果测试
import skimage.data
import numpy
import matplotlib
import numpycnn
"""
The project is tested using Python 3.5.2 installed inside Anaconda 4.2.0 (64-bit)
NumPy version used is 1.14.0
"""
# Reading the image
#img = skimage.io.imread("test.jpg")
#img = skimage.data.checkerboard()
img = skimage.data.chelsea()
#img = skimage.data.camera()
# Converting the image into gray.
img = skimage.color.rgb2gray(img)
##
# First conv layer
#l1_filter = numpy.random.rand(2,7,7)*20
# Preparing the filters randomly.
l1_filter = numpy.zeros((2,3,3))
l1_filter[0, :, :] = numpy.array([[[-1, 0, 1],
[-1, 0, 1],
[-1, 0, 1]]])
l1_filter[1, :, :] = numpy.array([[[1, 1, 1],
[0, 0, 0],
[-1, -1, -1]]])
print("\n**Working with conv layer 1**")
l1_feature_map = numpycnn.conv(img, l1_filter)
print("\n**ReLU**")
l1_feature_map_relu = numpycnn.relu(l1_feature_map)
print("\n**Pooling**")
l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2)
print("**End of conv layer 1**\n")
# Second conv layer
l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])
print("\n**Working with conv layer 2**")
l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter)
print("\n**ReLU**")
l2_feature_map_relu = numpycnn.relu(l2_feature_map)
print("\n**Pooling**")
l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2)
print("**End of conv layer 2**\n")
################################################################################
# Third conv layer
l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])
print("\n**Working with conv layer 3**")
l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter)
print("\n**ReLU**")
l3_feature_map_relu = numpycnn.relu(l3_feature_map)
print("\n**Pooling**")
l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2)
print("**End of conv layer 3**\n")
# Graphing
# results
fig0, ax0 = matplotlib.pyplot.subplots(nrows=1, ncols=1)
ax0.imshow(img).set_cmap("gray")
ax0.set_title("Input Image")
ax0.get_xaxis().set_ticks([])
ax0.get_yaxis().set_ticks([])
matplotlib.pyplot.savefig("in_img.png", bbox_inches="tight")
matplotlib.pyplot.close(fig0)
# Layer 1
################################################################################
fig1, ax1 = matplotlib.pyplot.subplots(nrows=3, ncols=2)
ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")
ax1[0, 0].get_xaxis().set_ticks([])
ax1[0, 0].get_yaxis().set_ticks([])
ax1[0, 0].set_title("L1-Map1")
ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")
ax1[0, 1].get_xaxis().set_ticks([])
ax1[0, 1].get_yaxis().set_ticks([])
ax1[0, 1].set_title("L1-Map2")
ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")
ax1[1, 0].get_xaxis().set_ticks([])
ax1[1, 0].get_yaxis().set_ticks([])
ax1[1, 0].set_title("L1-Map1ReLU")
ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")
ax1[1, 1].get_xaxis().set_ticks([])
ax1[1, 1].get_yaxis().set_ticks([])
ax1[1, 1].set_title("L1-Map2ReLU")
ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 0].set_title("L1-Map1ReLUPool")
ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax1[2, 0].get_xaxis().set_ticks([])
ax1[2, 0].get_yaxis().set_ticks([])
ax1[2, 1].set_title("L1-Map2ReLUPool")
matplotlib.pyplot.savefig("L1.png", bbox_inches="tight")
matplotlib.pyplot.close(fig1)
# Layer 2
################################################################################
fig2, ax2 = matplotlib.pyplot.subplots(nrows=3, ncols=3)
ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")
ax2[0, 0].get_xaxis().set_ticks([])
ax2[0, 0].get_yaxis().set_ticks([])
ax2[0, 0].set_title("L2-Map1")
ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")
ax2[0, 1].get_xaxis().set_ticks([])
ax2[0, 1].get_yaxis().set_ticks([])
ax2[0, 1].set_title("L2-Map2")
ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")
ax2[0, 2].get_xaxis().set_ticks([])
ax2[0, 2].get_yaxis().set_ticks([])
ax2[0, 2].set_title("L2-Map3")
ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")
ax2[1, 0].get_xaxis().set_ticks([])
ax2[1, 0].get_yaxis().set_ticks([])
ax2[1, 0].set_title("L2-Map1ReLU")
ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")
ax2[1, 1].get_xaxis().set_ticks([])
ax2[1, 1].get_yaxis().set_ticks([])
ax2[1, 1].set_title("L2-Map2ReLU")
ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")
ax2[1, 2].get_xaxis().set_ticks([])
ax2[1, 2].get_yaxis().set_ticks([])
ax2[1, 2].set_title("L2-Map3ReLU")
ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax2[2, 0].get_xaxis().set_ticks([])
ax2[2, 0].get_yaxis().set_ticks([])
ax2[2, 0].set_title("L2-Map1ReLUPool")
ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
ax2[2, 1].get_xaxis().set_ticks([])
ax2[2, 1].get_yaxis().set_ticks([])
ax2[2, 1].set_title("L2-Map2ReLUPool")
ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")
ax2[2, 2].get_xaxis().set_ticks([])
ax2[2, 2].get_yaxis().set_ticks([])
ax2[2, 2].set_title("L2-Map3ReLUPool")
matplotlib.pyplot.savefig("L2.png", bbox_inches="tight")
matplotlib.pyplot.close(fig2)
# Layer 3
################################################################################
fig3, ax3 = matplotlib.pyplot.subplots(nrows=1, ncols=3)
ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")
ax3[0].get_xaxis().set_ticks([])
ax3[0].get_yaxis().set_ticks([])
ax3[0].set_title("L3-Map1")
ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")
ax3[1].get_xaxis().set_ticks([])
ax3[1].get_yaxis().set_ticks([])
ax3[1].set_title("L3-Map1ReLU")
ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
ax3[2].get_xaxis().set_ticks([])
ax3[2].get_yaxis().set_ticks([])
ax3[2].set_title("L3-Map1ReLUPool")
matplotlib.pyplot.savefig("L3.png", bbox_inches="tight")
matplotlib.pyplot.close(fig3)
方法二:使用SVM分类器对数据进行分类
# -*- coding: utf-8 -*-
"""
Created on Fri May 4 10:54:49 2018
@author: aixin
"""
import numpy as np
from sklearn.model_selection import train_test_split
X = np.load(r"C:\Users\aixin\Desktop\lungsound\LSS_x_y\X.npy")
y = np.load(r"C:\Users\aixin\Desktop\lungsound\LSS_x_y\y.npy")
X = X[:-1]
y = y[:-1]
print('Cutted data shape: ', X.shape)
print('Cutted data shape: ', y.shape)
'''
Cutted data shape: (230, 36, 36, 3)
Cutted data shape: (230,)
'''
################################################################################
# 避免过拟合,采用交叉验证,# 验证集占训练集30%,固定随机种子(random_state)
train_data , train_labels, test_data ,test_labels
= train_test_split(X, y,test_size=0.302, random_state=40)
# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
################################################################################
# Split the data into train,
# val, and test sets. In addition we will
# create a small development
# set as a subset of the training data;
# we can use this for
# development so our code runs faster.
num_training = 140 # 训练数据
num_validation = 20 # 验证数据
num_test = 10 # 测试数据
num_dev = 5 # small development 数据
################################################################################
# Our validation set will be
# num_validation points from the original
# training set.
mask = range(num_training, num_training + num_validation) # 49000-50000的数据
X_val = X_train[mask]
y_val = y_train[mask]
# Our training set will be the first num_train points from the original
# training set.
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
# We will also make a
# development set, which is a small subset of
# the training set.
mask = np.random.choice(num_training, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]
# We use the first num_test points of the original test set as our
# test set.
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
###
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
################################################################################
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)
# (140, 3889) (20, 3889) (10, 3889) (5, 3889)
################################################################################
# generate a random
# SVM weight matrix of small numbers
from classifiers.linear_svm import svm_loss_naive
W = np.random.randn(X_train.shape[1], 10) * 0.0001
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.00005)
print('loss: %f' % (loss, ))
################################################################################
# In the file linear_classifier.py, implement SGD in the function
# LinearClassifier.train() and then run it with the code below.
from classifiers import LinearSVM
svm = LinearSVM()
tic = time.time()
loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4,
num_iters=1500, verbose=True)
toc = time.time()
print('That took %fs' % (toc - tic))
plt.plot(loss_hist)
plt.xlabel('Iteration number')
plt.ylabel('Loss value')
plt.show()
################################################################################
# training and validation set
y_train_pred = svm.predict(X_train) # 49000x3073
print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
y_val_pred = svm.predict(X_val) # 1000x3073
print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))
################################################################################
'''
training accuracy: 0.814286
validation accuracy: 0.850000
'''
################################################################################
import tensorflow as tf
import numpy as np
import image
def weight_variable(shape, dtype, name):
initial = tf.truncated_normal(shape = shape, stddev = 0.1, dtype = dtype, name = name)
return tf.Variable(initial)
def bias_variable(shape, dtype, name):
initial = tf.constant(0.1, shape = shape, dtype = dtype, name = name)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME')
# Lungsound_path = r"C:\Users\aixin\Desktop\lungsound"
Lungsound_path = r"C:\Users\aixin\Desktop\lungsound"
Lungsound = input_data.read_data_sets(Lungsound_path, one_hot = True)
x = tf.placeholder("float", [None, 784])
y = tf.placeholder("float", [None, 2])
x_image = tf.reshape(x, [-1, 28, 28, 1])
# convolution 1
weight_conv1 = weight_variable([5, 5, 1, 32], dtype = "float", name = 'weight_conv1')
bias_conv1 = bias_variable([32], dtype = "float", name = 'bias_conv1')
hidden_conv1 = tf.nn.relu(conv2d(x_image, weight_conv1) + bias_conv1)
hidden_pool1 = max_pool_2x2(hidden_conv1)
# convolution 2
weight_conv2 = weight_variable([5, 5, 32, 64], dtype = "float", name = 'weight_conv2')
bias_conv2 = bias_variable([64], dtype = "float", name = 'bias_conv2')
hidden_conv2 = tf.nn.relu(conv2d(hidden_pool1, weight_conv2) + bias_conv2)
hidden_pool2 = max_pool_2x2(hidden_conv2)
# function 1
hidden_pool2_flat = tf.reshape(hidden_pool2, [-1, 7 * 7 * 64])
weight_fc1 = weight_variable([7 * 7 * 64, 1024], dtype = "float", name = 'weight_fc1')
bias_fc1 = bias_variable([1024], dtype = "float", name = 'bias_fc1')
hidden_fc1 = tf.nn.relu(tf.matmul(hidden_pool2_flat, weight_fc1) + bias_fc1)
keep_prob = tf.placeholder("float")
hidden_fc1_dropout = tf.nn.dropout(hidden_fc1, keep_prob)
# function 2
weight_fc2 = weight_variable([1024, 2], dtype = "float", name = 'weight_fc2')
bias_fc2 = bias_variable([2], dtype = "float", name = 'weight_fc2')
y_fc2 = tf.nn.softmax(tf.matmul(hidden_fc1_dropout, weight_fc2) + bias_fc2)
# create tensorflow structure
cross_entropy = -tf.reduce_sum(y * tf.log(y_fc2))
optimize = tf.train.AdamOptimizer(0.0001)
train = optimize.minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_fc2, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# initial all variables
init = tf.initialize_all_variables()
session = tf.Session()
session.run(init)
# train
def Train() :
for i in range(5000):
batch = Lungsound.train.next_batch(50)
session.run(train, feed_dict = {x:batch[0], y:batch[1], keep_prob:0.5})
if i % 100 == 0:
print("step %4d: " % i)
print(session.run(accuracy, feed_dict = {x:batch[0], y:batch[1], keep_prob:1}))
print(session.run(accuracy, feed_dict = {x:Lungsound.test.images, y:Lungsound.test.labels, keep_prob:1}))
# save variables
def save() :
saver = tf.train.Saver()
saver.save(session, save_path)
# restore variables
def restore() :
saver = tf.train.Saver()
saver.restore(session, save_path)
def getTestPicArray(filename) :
im = Image.open(filename)
x_s = 28
y_s = 28
out = im.resize((x_s, y_s), Image.ANTIALIAS)
im_arr = np.array(out.convert('L'))
num0 = 0
num255 = 0
threshold = 100
for x in range(x_s):
for y in range(y_s):
if im_arr[x][y] > threshold :
num255 = num255 + 1
else :
num0 = num0 + 1
if(num255 > num0) :
print("convert!")
for x in range(x_s):
for y in range(y_s):
im_arr[x][y] = 255 - im_arr[x][y]
if(im_arr[x][y] < threshold) :
im_arr[x][y] = 0
out = Image.fromarray(np.uint8(im_arr))
out.save(filename.split('/')[0] + '/28pix/' + filename.split('/')[1])
#print im_arr
nm = im_arr.reshape((1, 784))
nm = nm.astype(np.float32)
nm = np.multiply(nm, 1.0 / 255.0)
return nm
def testMyPicture() :
testNum = input("input the number of test picture:")
for i in range(testNum) :
testPicture = raw_input("input the test picture's path:")
oneTestx = getTestPicArray(testPicture)
ans = tf.argmax(y_fc2, 1)
print("The prediction answer is:")
print(session.run(ans, feed_dict = {x:oneTestx, keep_prob:1}))
save_path = "network/cnn.ckpt"
# train...........model
Train()
#save ...........model
save()
#restore()
testMyPicture()
session.close()
import numpy as np
from random import shuffle
def softmax_loss_naive(W, X, y, reg):
"""
Softmax loss function, naive implementation (with loops)
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
#############################################################################
# TODO: Compute the softmax loss and its gradient using explicit loops. #
# Store the loss in loss and the gradient in dW. If you are not careful #
# here, it is easy to run into numeric instability. Don't forget the #
# regularization! #
#############################################################################
# pass
# num_train = X.shape[0]
# num_classes = W.shape[1]
# for i in range(num_train):
# scores = X[i].dot(W)
# prevent_explo_scores = scores - max(scores)
# 这里减去最大值是防止数值爆炸
# loss_i = - prevent_explo_scores[y[i]] + np.log(sum(np.exp(prevent_explo_scores)))
# loss += loss_i
# for j in range(num_classes):
# softmax_output = np.exp(prevent_explo_scores[j]) / sum(np.exp(prevent_explo_scores))
# if j == y[i]:
# dW[:, j] += (-1 + softmax_output) * X[i]
# else:
# dW[:, j] =softmax_output * X[i]
# loss /= num_train
# loss += 0.5 *reg *np.sum(W *W)
# dW = dW/num_train + reg *W
########################另一个 GitHub-observerspy 的办法#####################
num_classes = W.shape[1]
num_train = X.shape[0]
loss = 0.0
for i in range(num_train):
scores = X[i].dot(W)
correct_class_score = scores[y[i]]
exp_sum = np.sum(np.exp(scores))
loss += np.log(exp_sum) - correct_class_score
dW[:, y[i]] += -X[i]
for j in range(num_classes):
dW[:, j] += (np.exp(scores[j]) / exp_sum) * X[i]
loss /= num_train
dW /= num_train
loss += 0.5 *reg *np.sum(W*W)
dW += reg*W
#############################################################################
# END OF YOUR CODE #
#############################################################################
return loss, dW
def softmax_loss_vectorized(W, X, y, reg):
"""
Softmax loss function, vectorized version.
Inputs and outputs are the same as softmax_loss_naive.
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
#############################################################################
# TODO: Compute the softmax loss and its gradient using no explicit loops. #
# Store the loss in loss and the gradient in dW. If you are not careful #
# here, it is easy to run into numeric instability. Don't forget the #
# regularization! #
#############################################################################
# pass
loss = 0.0
num_classes = W.shape[1] # C 10
num_train = X.shape[0] # N 49000
scores = X.dot(W) # NxD * DxC = NxC 49000*10
prevent_explo_scores = scores - np.max(scores, axis=1).reshape(-1,1) # N*1
softmax_output = np.exp(prevent_explo_scores)/np.sum(np.exp(prevent_explo_scores), axis =1).reshape(-1,1)
loss = -np.sum(np.log(softmax_output[range(num_train), list(y)]))
loss /= num_train
loss += 0.5* reg* np.sum(W* W)
dS = softmax_output.copy()
dS[range(num_train), list(y)] += -1 # 减去那个-1项,看我的笔记就知道了
dW = (X.T).dot(dS) # DxN * NxC = DxC 3073*10
dW = dW / num_train + reg *W
########################另一个 GitHub-observerspy 的办法#####################
# num_train = X.shape[0]
# num_classes = W.shape[1]
# scores = X.dot(W)
# correct_class_score = scores[np.arange(num_train), y].reshape(-1,1)
# exp_sum = np.sum(np.exp(scores), axis=1).reshape(-1,1)
# loss += np.sum(np.log(exp_sum) - correct_class_score)
# margin = np.exp(scores) / exp_sum
# margin[np.arange(num_train),y] += 1
# dW = X.T.dot(margin)
# loss /= num_train
# dW /= num_train
# loss += 0.5*reg*np.sum(W*W)
# dW += reg*W
#############################################################################
# END OF YOUR CODE #
#############################################################################
return loss, dW
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
class TwoLayerNet(object):
"""
A two-layer fully-connected neural network. The net has an input dimension of
N, a hidden layer dimension of H,
and performs classification over C classes.
We train the network with a softmax loss function and L2 regularization
on the weight matrices. The network uses a ReLU nonlinearity after the first fully
connected layer.
In other words, the network has the following architecture:
input - fully connected layer - ReLU - fully connected layer - softmax
The outputs of the second fully-connected layer are the scores for each class.
两层层全连接---神经网络
网络的输入维数N、H隐藏层维度,然后执行C类以上的分类。
网络使用softmax损失函数和使用L2正则化。
第一个全连接层后,使用的是ReLU非线性连接层
网络结构就是:输入层——全连接层——ReLU-全连接层——softmax
第二个全连接层的输出就是:每个类的分数。
"""
def __init__(self, input_size, hidden_size, output_size, std=1e-4):
"""
Initialize the model. Weights are initialized to small random values and
biases are initialized to zero. Weights and biases are stored in the
variable self.params, which is a dictionary with the following keys:
W1: First layer weights; has shape (D, H)
b1: First layer biases; has shape (H,)
W2: Second layer weights; has shape (H, C)
b2: Second layer biases; has shape (C,)
Inputs:
- input_size: The dimension D of the input data.
- hidden_size: The number of neurons H in the hidden layer.
- output_size: The number of classes C.
初始化模型中权重是比较小的随机值,偏置初始化为零,存在: self.params字典中
分别有w1,b1,w2,b2四个键值,对应的是四个初始化矩阵
网络大概是这个样子
输入 D ----> DxH && Hx1 -----> H -----> HxC && Cx1 ----> C
"""
self.params = {}
self.params['W1'] = std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def loss(self, X, y=None, reg=0.0):
"""
Compute the loss and gradients for a two layer fully connected neural
network.
Inputs:
- X: Input data of shape (N, D). Each X[i] is a training sample.
- y: Vector of training labels. y[i] is the label for X[i], and each y[i] is
an integer in the range 0 <= y[i] < C.
This parameter is optional; if it
is not passed then we only return scores, and if it is passed then we
instead return the loss and gradients.
- reg: Regularization strength.
Returns:
If y is None, return a matrix scores of shape (N, C) where scores[i, c] is
the score for class c on input X[i].
If y is not None, instead return a tuple of:
- loss: Loss (data loss and regularization loss) for this batch of training
samples.
- grads: Dictionary mapping parameter names to gradients of those parameters
with respect to the loss function; has the same keys as self.params.
计算损失:
X = NxD y 就是X对应的分数 Nx1
如果传入参数y 则返回损失和梯度 grads, loss,
如果没有参数y 则返回的 分数: NxC 的, 分数[i, c] 对应输入的X[i] 对每一类的分数
"""
# Unpack variables from the params dictionary
W1, b1 = self.params['W1'], self.params['b1']
W2, b2 = self.params['W2'], self.params['b2']
N, D = X.shape
# Compute the forward pass
scores = None
#############################################################################
# TODO: Perform the forward pass, computing the class scores for the input. #
# Store the result in the scores variable, which should be an array of #
# shape (N, C). #
#############################################################################
H_out = np.maximum(0, X.dot(W1) + b1) # ReLU 就是np.maximum H_out = NxH
scores = H_out.dot(W2) + b2 # NxC
# pass
#############################################################################
# END OF YOUR CODE #
#############################################################################
# If the targets are not given then jump out, we're done
# 这里就是看是否有y给出,给出就继续,没有就返回scores
if y is None:
return scores
# Compute the loss
loss = None
#############################################################################
# TODO: Finish the forward pass, and compute the loss. This should include #
# both the data loss and L2 regularization for W1 and W2. Store the result #
# in the variable loss, which should be a scalar. Use the Softmax #
# classifier loss. #
#############################################################################
prevent_explo_scores = scores - np.max(scores, axis=1).reshape(-1,1) # N*1
softmax_output = np.exp(prevent_explo_scores)/np.sum(np.exp(prevent_explo_scores), axis =1).reshape(-1,1) # 分母按行求和, 最后得到 NxC
loss = -np.sum(np.log(softmax_output[range(N), list(y)])) #
# np.sum()
# 直接就是所有的和得到一个数值, 如果axis=None
loss /= N
loss += 0.5* reg* (np.sum(W1 * W1) + np.sum(W2 * W2))
# pass
#############################################################################
# END OF YOUR CODE #
#############################################################################
# Backward pass: compute gradients
grads = {}
#############################################################################
# TODO: Compute the backward pass, computing the derivatives of the weights #
# and biases. Store the results in the grads dictionary. For example, #
# grads['W1'] should store the gradient on W1, and be a matrix of same size #
#############################################################################
dscores = softmax_output.copy() # NxC
dscores[range(N), list(y)] -= 1
dscores /= N
dW2 = H_out.T.dot(dscores) + reg * W2 # HxC
# 这里别忘了正则项
grads['W2'] = dW2
grads['b2'] = np.sum(dscores, axis=0)
dH = dscores.dot(W2.T)
dH_Relu = (H_out > 0) * dH
# 这个语句就包含了:dH_Relu[out1 <= 0] = 0
grads['W1'] = X.T.dot(dH_Relu) + reg * W1
grads['b1'] = np.sum(dH_Relu, axis = 0)
# pass
#############################################################################
# END OF YOUR CODE #
#############################################################################
return loss, grads
def train(self, X, y, X_val, y_val,
learning_rate=1e-3, learning_rate_decay=0.95,
reg=5e-6, num_iters=100,
batch_size=200, verbose=False):
"""
Train this neural network using stochastic gradient descent.
Inputs:
- X: A numpy array of shape (N, D) giving training data.
- y: A numpy array f shape (N,) giving training labels; y[i] = c means that
X[i] has label c, where 0 <= c < C.
- X_val: A numpy array of shape (N_val, D) giving validation data.
- y_val: A numpy array of shape (N_val,) giving validation labels.
- learning_rate: Scalar giving learning rate for optimization.
- learning_rate_decay: Scalar giving factor used to decay the learning rate
after each epoch.
- reg: Scalar giving regularization strength.
- num_iters: Number of steps to take when optimizing.
- batch_size: Number of training examples to use per step.
- verbose: boolean; if true print progress during optimization.
"""
num_train = X.shape[0] # NxD
iterations_per_epoch = max(num_train / batch_size, 1)
# Use SGD to optimize the parameters in self.model
loss_history = []
train_acc_history = []
val_acc_history = []
for it in range(num_iters):
X_batch = None
y_batch = None
#########################################################################
# TODO: Create a random minibatch of training data and labels, storing #
# them in X_batch and y_batch respectively. #
#########################################################################
# pass
idx = np.random.choice(num_train, batch_size, replace=True)
X_batch = X[idx]
y_batch = y[idx]
#########################################################################
# END OF YOUR CODE #
#########################################################################
# Compute loss and gradients using the current minibatch
loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
loss_history.append(loss)
#########################################################################
# TODO: Use the gradients in the grads dictionary to update the #
# parameters of the network (stored in the dictionary self.params) #
# using stochastic gradient descent. You'll need to use the gradients #
# stored in the grads dictionary defined above. #
#########################################################################
# pass
self.params['W2'] += -learning_rate * grads['W2']
self.params['b2'] += -learning_rate * grads['b2']
self.params['W1'] += -learning_rate * grads['W1']
self.params['b1'] += -learning_rate * grads['b1']
#########################################################################
# END OF YOUR CODE #
#########################################################################
if verbose and it % 10 == 0:
print('iteration %d / %d: loss %f' % (it, num_iters, loss))
# Every epoch, check train
# and val accuracy and decay learning rate.
if it % iterations_per_epoch == 0:
# Check accuracy
train_acc = (self.predict(X_batch) == y_batch).mean()
val_acc = (self.predict(X_val) == y_val).mean()
train_acc_history.append(train_acc)
val_acc_history.append(val_acc)
# Decay learning rate
learning_rate *= learning_rate_decay
return {
'loss_history': loss_history,
'train_acc_history': train_acc_history,
'val_acc_history': val_acc_history,
}
def predict(self, X):
"""
Use the trained weights of this two-layer network to predict labels for
data points. For each data point we predict scores for each of the C
classes, and assign each data point to the class with the highest score.
Inputs:
- X: A numpy array of shape (N, D) giving N D-dimensional data points to
classify.
Returns:
- y_pred: A numpy array of shape (N,) giving predicted labels for each of
the elements of X. For all i, y_pred[i] = c means that X[i] is predicted
to have class c, where 0 <= c < C.
"""
y_pred = None
###########################################################################
# TODO: Implement this function; it should be VERY simple! #
###########################################################################
# pass
H = np.maximum(0, X.dot(self.params['W1']) + self.params['b1'])
final_scores = H.dot(self.params['W2']) + self.params['b2']
y_pred = np.argmax(final_scores, axis = 1)
###########################################################################
# END OF YOUR CODE #
###########################################################################
return y_pred
import numpy as np
from random import shuffle
# 这是naive 的损失函数:就是有循环,看到了吧, 鄙视你循环!
# 其实更新梯度有两种方法,1. 倒数的定义出发,2.直接微分分析
######################## 输入:#############################
# #### W numpy (维度【权重D维度】, 类【类别个数】) 3073x10 #
# #### X numpy (N个数据,权重D维度) 100x3073 #
# #### y numpy (N,) y[i] =c, X[i]的分类是c, c < C! 100 #
# #### reg float 正则化强度 ,或者正则化系数 #
######################## 输出:#############################
# #### loss, dW, 单精度float, dW 和 W 一样的维度 #
##################################################
def svm_loss_naive(W, X, y, reg):
"""
Structured SVM loss function, naive implementation (with loops).
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
dW = np.zeros(W.shape) # initialize the gradient as zero
# compute the loss and the gradient
num_classes = W.shape[1] # 10
num_train = X.shape[0] # 100x3073
loss = 0.0
for i in range(num_train):
scores = X[i].dot(W) # X[i].dot(W) = (1*D) · (D*C) = 1*C = 1*10
correct_class_score = scores[y[i]]
for j in range(num_classes):
if j == y[i]:
continue
margin = scores[j] - correct_class_score + 1 # note delta = 1
# 每个大于0的maxmargin会产生两个贡献
if margin > 0:
loss += margin
dW[:,j] += X[i].T
# 分类错误的添加一个xi
dW[:,y[i]] -=X[i].T
# 分类正确的产生一个-xi
# Right now the loss is a sum over all training examples, but we want it
# to be an average instead so we divide by num_train.
loss /= num_train
# 这里就是那个 ( 1/N )
dW /= num_train
# Add regularization to the loss.
loss += 0.5 * reg * np.sum(W * W)
# 加正则化
dW += reg*W
#############################################################################
# TODO: #
# Compute the gradient of the loss function and store it dW. #
# Rather that first computing the loss and then computing the derivative, #
# it may be simpler to compute the derivative at the same time that the #
# loss is being computed. As a result you may need to modify some of the #
# code above to compute the gradient. #
#############################################################################
return loss, dW
# 构建向量化SVM 损失函数, 这里得到的输出和 非向量化的相同
# 先存储,score,和loss, 然后计算dW.
def svm_loss_vectorized(W, X, y, reg):
"""
Structured SVM loss function, vectorized implementation.
Inputs and outputs are the same as svm_loss_naive.
"""
loss = 0.0
dW = np.zeros(W.shape) # initialize the gradient as zero
num_train = X.shape[0]
num_classes = W.shape[1]
#############################################################################
# TODO: #
# Implement a vectorized version of the structured SVM loss, storing the #
# result in loss. #
#############################################################################
# pass
scores = X.dot(W) # N*C
correct_class_score = scores[range(num_train), list(y)].reshape(-1,1)
margin = np.maximum(0, scores - correct_class_score + 1)
# margin[range(num_train), list(y)] = 0 # sj-si + 1 >0 ,所以不算这些.
loss = np.sum(margin) / num_train + 0.5 * reg * np.sum(W * W)
#############################################################################
# END OF YOUR CODE #
#############################################################################
#############################################################################
# TODO: #
# Implement a vectorized version of the gradient for the structured SVM #
# loss, storing the result in dW. #
# #
# Hint: Instead of computing the gradient from scratch, it may be easier #
# to reuse some of the intermediate values that you used to compute the #
# loss. #
#############################################################################
# pass
# 这里是来自 lightatime的GitHub
# coeff_mat = np.zeros((num_train, num_classes))
# coeff_mat[margin>0] = 1
# coeff_mat[(range(num_train), list[y])] = 0
# coeff_mat[(range(num_train), list[y])] = -np.sum(coeff_mat, axis=1)
#
# dW = (x.T).dot(coeff_mat)
# dW = dW / num_train + reg*W
#############################################################################
######## 下面是另一种方法,好像这个简单,不需要中间矩阵 coeff_mat ##########
margin[margin>0] = 1 # 或者写成 margin = (margin>0)*1
row_sum = np.sum(margin,axis=1) #
margin[range(num_train), list(y)] = -row_sum
dW = X.T.dot(margin) / num_train + reg*W # D*C
#############################################################################
# END OF YOUR CODE #
#############################################################################
return loss, dW
from __future__ import print_function
import numpy as np
from cs231n.classifiers.linear_svm import *
from cs231n.classifiers.softmax import *
# 这里只需要说一下:verbose,就是训练优化过程中要不要打印过程
class LinearClassifier(object):
def __init__(self):
self.W = None
def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100,
batch_size=200, verbose=False):
"""
Train this linear classifier using stochastic gradient descent.
Inputs:
- X: A numpy array of shape (N, D) containing training data; there are N
training samples each of dimension D.
- y: A numpy array of shape (N,) containing training labels; y[i] = c
means that X[i] has label 0 <= c < C for C classes.
- learning_rate: (float) learning rate for optimization.
- reg: (float) regularization strength.
- num_iters: (integer) number of steps to take when optimizing
- batch_size: (integer) number of training examples to use at each step.
- verbose: (boolean) If true, print progress during optimization.
Outputs:
A list containing the value of the loss function at each training iteration.
"""
num_train, dim = X.shape
num_classes = np.max(y) + 1 # assume y takes values 0...K-1 where K is number of classes
if self.W is None:
# lazily initialize W
self.W = 0.001 * np.random.randn(dim, num_classes)
# Run stochastic gradient descent to optimize W
loss_history = []
for it in range(num_iters):
X_batch = None
y_batch = None
#########################################################################
# TODO: #
# Sample batch_size elements from the training data and their #
# corresponding labels to use in this round of gradient descent. #
# Store the data in X_batch and their corresponding labels in #
# y_batch; after sampling X_batch should have shape (dim, batch_size) #
# and y_batch should have shape (batch_size,) #
# #
# Hint: Use np.random.choice to generate indices. Sampling with #
# replacement is faster than sampling without replacement. #
#########################################################################
# pass
mask = np.random.choice(num_train, batch_size, replace=True)
X_batch = X[mask]
# 随机从数据中选取数据
y_batch = y[mask]
# 用来随机梯度下降啊
#########################################################################
# END OF YOUR CODE #
#########################################################################
# evaluate loss and gradient
loss, grad = self.loss(X_batch, y_batch, reg)
loss_history.append(loss)
# perform parameter update
#########################################################################
# TODO: #
# Update the weights using the gradient and the learning rate. #
#########################################################################
# pass
self.W += -learning_rate * grad
#########################################################################
# END OF YOUR CODE #
#########################################################################
if verbose and it % 100 == 0:
print('iteration %d / %d: loss %f' % (it, num_iters, loss))
return loss_history
def predict(self, X):
"""
Use the trained weights of this linear classifier to predict labels for
data points.
Inputs:
- X: A numpy array of shape (N, D) containing training data; there are N
training samples each of dimension D.
Returns:
- y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional
array of length N, and each element is an integer giving the predicted
class.
"""
y_pred = np.zeros(X.shape[1])
###########################################################################
# TODO: #
# Implement this method. Store the predicted labels in y_pred. #
###########################################################################
# pass
y_pred = np.argmax(X.dot(self.W), axis=1)
###########################################################################
# END OF YOUR CODE #
###########################################################################
return y_pred
def loss(self, X_batch, y_batch, reg):
"""
Compute the loss function and its derivative.
Subclasses will override this.
Inputs:
- X_batch: A numpy array of shape (N, D) containing a minibatch of N
data points; each point has dimension D.
- y_batch: A numpy array of shape (N,) containing labels for the minibatch.
- reg: (float) regularization strength.
Returns: A tuple containing:
- loss as a single float
- gradient with respect to self.W; an array of the same shape as W
"""
pass
class LinearSVM(LinearClassifier):
""" A subclass that uses the Multiclass SVM loss function """
def loss(self, X_batch, y_batch, reg):
return svm_loss_vectorized(self.W, X_batch, y_batch, reg)
class Softmax(LinearClassifier):
""" A subclass that uses the Softmax + Cross-entropy loss function """
def loss(self, X_batch, y_batch, reg):
return softmax_loss_vectorized(self.W, X_batch, y_batch, reg)
import numpy as np
from past.builtins import xrange
# pass 空语句块,是为了保持程序结构的完整性,一般用做占位语句
class KNearestNeighbor(object):
""" a kNN classifier with L2 distance """
def __init__(self):
pass
def train(self, X, y):
"""
Train the classifier. For k-nearest neighbors this is just
memorizing the training data.
Inputs:
- X: A numpy array of shape (num_train, D) containing the training data
consisting of num_train samples each of dimension D.
- y: A numpy array of shape (N,) containing the training labels, where
y[i] is the label for X[i].
"""
self.X_train = X # 5000x3072
self.y_train = y # 500x3072
def predict(self, X, k=1, num_loops=0):
"""
Predict labels for test data using this classifier.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data consisting
of num_test samples each of dimension D.
- k: The number of nearest neighbors that vote for the predicted labels.
- num_loops: Determines which implementation to use to compute distances
between training points and testing points.
Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
现在是用分类器给测试数据分类啦!
输入:
X numpy (num_test, D),比如(5000,3072)
k 选取几个最近的label
num_loops 哪个计算距离的方法,0:no_loops 1:one_loops 2:two_loops
输出:
y numpy (num_test,) 比如(500) 其实就是标签啦
test_data y[i] 就是X[i] 的标签
"""
if num_loops == 0:
dists = self.compute_distances_no_loops(X)
elif num_loops == 1:
dists = self.compute_distances_one_loop(X)
elif num_loops == 2:
dists = self.compute_distances_two_loops(X)
else:
raise ValueError('Invalid value %d for num_loops' % num_loops)
return self.predict_labels(dists, k=k)
def compute_distances_two_loops(self, X):
"""
######################
##### 计算L2 距离 #####
######################
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data.
Returns:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
is the Euclidean distance between the ith test point and the jth training
point.
"""
num_test = X.shape[0]
# 500
num_train = self.X_train.shape[0]
# 5000
dists = np.zeros((num_test, num_train))
# 500x5000 全零矩阵
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension.
#
#####################################################################
dists[i,j] = np.sqrt(np.sum(np.square(X[i] - self.X_train[j])))
# 另一种向量化方法
# dicts[i,j] = np.sqrt(np.dot(X[i]-self.X_train[i], X[i]-X_train[j]))
# 使用 函数 numpy.linalg.norm 来实现
# dicts[i,j] = np.linalg.norm(self.X_train[j,:] - X[i])
# pass
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists
def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
# pass
dists[i] = np.sqrt(np.sum(np.square(self.X_train - X[i]),axis =1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists
def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists.
#
# #
# You should implement this function using only basic array operations; #
# in particular you should not use functions from scipy. #
# #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
# pass
# 基本思想就是 (a-b)2 = a2+b2-2ab
A = np.sum(np.square(self.X_train), axis = 1)
B = np.transpose([np.sum(np.square(X), axis =1)])
er_AB = 2*np.dot(X, self.X_train.T)
dists = np.sqrt(A + B - er_AB)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists
def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point.
Inputs:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
gives the distance betwen the ith test point and the jth training point.
Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# testing point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
# pass
closest_y = self.y_train[np.argsort(dists[i])[:k]]
#argsort函数返回的是数组值从小到大的索引值
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
#########################################################################
# pass
y_pred[i] = np.argmax(np.bincount(closest_y))
# argmax 返回最值所在的索引
#########################################################################
# #
#########################################################################
return y_pred
# packages in environment at C:\Anaconda3\envs\py35_gpu:
#
_nb_ext_conf 0.4.0 py35_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
absl-py 0.2.0 <pip>
anaconda-client 1.6.3 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
astor 0.6.2 <pip>
audioread 2.1.5 <pip>
bleach 1.5.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
bleach 1.5.0 <pip>
certifi 2016.2.28 py35_0 defaults
certifi 2018.4.16 <pip>
chardet 3.0.4 <pip>
cloudpickle 0.5.3 <pip>
clyent 1.2.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
colorama 0.3.9 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
cycler 0.10.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
dask 0.18.1 <pip>
decorator 4.3.0 <pip>
decorator 4.1.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
Django 2.0.4 <pip>
entrypoints 0.2.3 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
enum34 1.1.6 <pip>
gast 0.2.0 <pip>
grpcio 1.11.0 <pip>
html5lib 0.9999999 <pip>
html5lib 0.9999999 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
icu 57.1 vc14_0 [vc14] https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
idna 2.7 <pip>
image 1.5.20 <pip>
imageio 2.3.0 <pip>
ipykernel 4.6.1 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
ipython 6.1.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
ipython_genutils 0.2.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
ipywidgets 6.0.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
jedi 0.10.2 py35_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
jinja2 2.9.6 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
joblib 0.11 <pip>
jpeg 9b vc14_0 [vc14] https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
jsonschema 2.6.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
jupyter_client 5.1.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
jupyter_core 4.3.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
Keras 2.1.2 <pip>
kiwisolver 1.0.1 <pip>
libpng 1.6.30 vc14_1 [vc14] https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
librosa 0.6.0 <pip>
llvmlite 0.23.0 <pip>
lxml 4.2.3 <pip>
Markdown 2.6.10 <pip>
markupsafe 1.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
matplotlib 2.2.2 <pip>
matplotlib 2.0.2 np113py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
mistune 0.7.4 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
mkl 2017.0.3 0 defaults
nb_anacondacloud 1.4.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
nb_conda 2.2.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
nb_conda_kernels 2.1.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
nbconvert 5.2.1 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
nbformat 4.4.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
nbpresent 3.0.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
networkx 2.1 <pip>
nltk 3.3 <pip>
notebook 5.0.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
numba 0.38.0 <pip>
numpy 1.13.1 py35_0 defaults
numpy 1.14.5 <pip>
opencv-python 3.4.1 <pip>
openssl 1.0.2l vc14_0 [vc14] https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
pandas 0.20.3 py35_0 defaults
pandocfilters 1.4.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
path.py 10.3.1 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
pickleshare 0.7.4 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
Pillow 5.1.0 <pip>
pip 10.0.1 <pip>
pip 9.0.1 py35_1 defaults
progressbar2 3.38.0 <pip>
prompt_toolkit 1.0.15 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
protobuf 3.5.1 <pip>
pygments 2.2.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
pyparsing 2.2.0 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
pyqt 5.6.0 py35_2 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
pyreadline 2.1 <pip>
python 3.5.4 0 defaults
python-dateutil 2.6.1 py35_0 defaults
python-utils 2.3.0 <pip>
pytz 2017.2 py35_0 defaults
PyWavelets 0.5.2 <pip>
pyyaml 3.12 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
PyYAML 3.12 <pip>
pyzmq 16.0.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
qt 5.6.2 vc14_6 [vc14] https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
requests 2.19.1 <pip>
requests 2.14.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
resampy 0.2.0 <pip>
scikit-image 0.14.0 <pip>
scikit-learn 0.19.0 np113py35_0 defaults
scikit-learn 0.19.1 <pip>
scipy 1.1.0 <pip>
scipy 0.19.1 np113py35_0 defaults
setuptools 36.4.0 py35_1 defaults
setuptools 38.2.5 <pip>
simplegeneric 0.8.1 py35_1 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
sip 4.18 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
six 1.10.0 py35_1 defaults
six 1.11.0 <pip>
tensorboard 1.8.0 <pip>
tensorflow 1.8.0 <pip>
tensorflow-gpu 1.4.0 <pip>
tensorflow-tensorboard 0.4.0rc3 <pip>
tensorlayer 1.9.0 <pip>
termcolor 1.1.0 <pip>
testpath 0.3.1 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tk 8.5.18 vc14_0 [vc14] https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
toolz 0.9.0 <pip>
torch 0.4.0 <pip>
torchvision 0.2.1 <pip>
tornado 4.5.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
tqdm 4.23.4 <pip>
traitlets 4.3.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
urllib3 1.23 <pip>
vc 14 0 defaults
vs2015_runtime 14.0.25420 0 defaults
wcwidth 0.1.7 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
Werkzeug 0.13 <pip>
wheel 0.29.0 py35_0 defaults
wheel 0.30.0 <pip>
widgetsnbextension 3.0.2 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
win_unicode_console 0.5 py35_0 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
wincertstore 0.2 py35_0 defaults
wrapt 1.10.11 <pip>
zlib 1.2.11 vc14_0 [vc14] https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free