@1007477689
2020-07-30T09:42:06.000000Z
字数 8193
阅读 874
量化
本文为个人对广发研报《指数高阶矩择时策略》的复现,纯代码+结果。
报告认为“高阶矩”可以刻画资产价格的变化,并且有一定的领先性,可以以此构造指数择时策略,原理见研报(在公众号后台回复“高阶矩”获取研报和代码)
文章为个人对报告的理解,结果并不准确,有问题请指出
python 版本:3.6
数据来源:tushare
回测时间段:20050408——20180630
数据来自 tushare
import pandas as pdimport numpy as npimport mathimport datetimeimport matplotlib.pyplot as pltimport tushare as ts%matplotlib inline
dateStart = datetime.date(2005, 4, 8)dateEnd = datetime.date(2018, 6, 30)HS300 = ts.get_k_data(code = '000300', index = True, start = f'{dateStart}', end = f'{dateEnd}')HS300
>>> date open close high low volume code0 2005-04-08 984.66 1003.45 1003.70 979.53 14762500.0 sh0003001 2005-04-11 1003.88 995.42 1008.73 992.77 15936100.0 sh0003002 2005-04-12 993.71 978.70 993.71 978.20 10226200.0 sh0003003 2005-04-13 987.95 1000.90 1006.50 987.95 16071700.0 sh0003004 2005-04-14 1004.64 986.97 1006.42 985.58 12945700.0 sh0003005 2005-04-15 982.61 974.08 982.61 971.93 10409000.0 sh000300
xticks = np.arange(start = 0, stop = HS300.shape[0], step = int(HS300.shape[0]/7))xticklabel = pd.Series(data = HS300.date[xticks])plt.figure(figsize = (20,5))fig = plt.axes()plt.plot(x = np.arange(HS300.shape[0]), y = HS300.close, color = 'red', label = 'close')fig.set_xticks(xticks)fig.set_xticklabels(HS300.date[xticks], rotation = 60)plt.show()
矩,是统计学中的一个常用的指标,用来反映数据分布的形态特点。矩,也被称为“动差”,它代表总体数据中所有变量值与任意一个给定常熟的差的 次方的算术平均数。
矩有原点矩、中心距等不同类型,在平时的统计中,我们比较常用的是原点矩和中心距。
原点矩是检验变量关于 0 的偏离程度,具体定义如下:
中心矩检验的是变量关于 “期望” 的偏离程度,具体定义如下:
其中,
可见,一阶中心距为 0,二阶中心矩就是方差。
def getHighMoment(EarnRate, k, N = 20):```EarnRate: 变量xk: 所求矩的阶数k```HighMoment = (EarnRate**k).rolling(window = N).mean()for i in range(1, N-1):HighMoment[i] = (EarnRate[:i+1]**k).mean()HighMoment.fillna(value = 0)return HighMoment
def getEMA(moment, alpha, N = 120):```EMA: Exponential Moving Averagemoment:alpha: Specify smoothing factor alpha directly, 0 < alpha ≤ 1.```EMA = pd.DataFrame.ewm(moment, alpha = alpha, adjust = False).mean()return EMA
报告认为,奇数阶矩对于市场走势具备一定的领先性,即:在市场即将出现上升或下降前,有明显数量级变化,我们做出 - 阶矩与指数收盘价的对比图。
其中,日收益率通过每日收盘价计算,高阶矩通过日收益率计算, 通过高阶矩计算。
# EarnRate = HS300.close.pct_change(1).fillna(0)EarnRate = HS300['close'].pct_change(periods = 1).fillna(value = 0)EarnRate# .pct_change() 表示当前第 i 个元素与先前的第 i-1 个元素的相差百分比,# 当然如果指定 periods=n,表示当前元素与先前 n 个元素的相差百分比。
>>> 0 0.0000001 -0.0080022 -0.0167973 0.0226834 -0.0139175 -0.013060...
Moment_20_2 = getHighMoment(EarnRate = EarnRate, k = 2)Moment_20_3 = getHighMoment(EarnRate = EarnRate, k = 3)Moment_20_4 = getHighMoment(EarnRate = EarnRate, k = 4)Moment_20_5 = getHighMoment(EarnRate = EarnRate, k = 5)Moment_20_6 = getHighMoment(EarnRate = EarnRate, k = 6)Moment_20_7 = getHighMoment(EarnRate = EarnRate, k = 7)
五阶矩
HS = plt.subplot(111)s1 = HS.plot(HS300.close, label = 'HS300')HS.set_xticks(xticks)HS.set_xticklabels(HS300.date[xticks], rotation = 60)ax2 = HS.twinx()s2 = ax2.plot(Moment_20_5, 'r',label = 'Moment-5')s = s1 + s2lns = [l.get_label() for l in s]plt.legend(s, lns)plt.show()
2 至 7 阶矩,从上往下依次
HS = plt.subplot(611)HS.plot(HS300.close)HS.set_xticks(xticks)HS.set_xticklabels([])ax2 = HS.twinx()ax2.plot(Moment_20_2, 'r')
HS = plt.subplot(612)HS.plot(HS300.close)HS.set_xticks(xticks)HS.set_xticklabels([])ax2 = HS.twinx()ax2.plot(Moment_20_3, 'r')
HS = plt.subplot(613)HS.plot(HS300.close)HS.set_xticks(xticks)HS.set_xticklabels([])ax2 = HS.twinx()ax2.plot(Moment_20_4, 'r')
HS = plt.subplot(614)HS.plot(HS300.close)HS.set_xticks(xticks)HS.set_xticklabels([])ax2 = HS.twinx()ax2.plot(Moment_20_5, 'r')
HS = plt.subplot(615)HS.plot(HS300.close)HS.set_xticks(xticks)HS.set_xticklabels([])ax2 = HS.twinx()ax2.plot(Moment_20_6, 'r')
HS = plt.subplot(616)HS.plot(HS300.close)HS.set_xticks(xticks)HS.set_xticklabels(HS300.date[xticks],rotation=60)ax2 = HS.twinx()ax2.plot(Moment_20_7, 'r')
plt.show<function matplotlib.pyplot.show>
alpha = 0.2,0.4时的EMAEMA_02 = getEMA(Moment_20_5,0.2)EMA_04 = getEMA(Moment_20_5,0.4)HS = plt.subplot(111)HS.plot(HS300.close)HS.set_xticks(xticks)HS.set_xticklabels(HS300.date[xticks],rotation=60)ax2 = HS.twinx()ax2.plot(EMA_02, 'r')ax3 = ax2.twinx()ax3.plot(EMA_04, 'y')plt.title('Moment-5')plt.show()
切线法寻优函数
输入变量:
输出变量:
def qiexian(profitrate, Moment, EMA):flag = np.zeros(len(profitrate))cumrate = np.ones(len(profitrate))for i in [i for i in range(len(profitrate)) if i > 1]:flag[i] = 1 if EMA[i - 1] > EMA[i-2] else flag[i] = -1# if EMA[i - 1] > EMA[i-2]:# flag[i] = 1# else:# flag[i] = -1strategy_rate = profitrate * flag + 1totalprofit = sum (strategy_rate - 1)return totalprofit
基本高阶矩择时模型中的交易函数
交易逻辑见报告第13页
Sharp:夏普比,年交易天数按250计,MDD:最大回撤率,其他输入输出参数意义同上
def BuySell(profitrate, Moment, EMA):flag = np.zeros(len(profitrate))cumrate = np.ones(len(profitrate))lossflag = 0# 计算单次择时损失,超过10%平仓flagloss = 0# 单次亏损超过10%时的信号方向# 计算最优alphaalpha_all = np.arange(0.05,0.5,0.05)for i in range(2,len(profitrate)):if i%90 ==0 :cumrate_all = [qiexian(list(profitrate[i - 90:i]),Moment[i - 90:i].values,getEMA(Moment,alpha_all[j])[i - 90:i].values) for j in range(len(alpha_all))]# 取使90天内累计收益率最大的alpha作为后续计算的alpha,并计算相应的EMAalpha = alpha_all[np.argmax(cumrate_all)]EMA = getEMA(Moment, alpha)EMA = getEMA(Moment, alpha)if lossflag < -0.1 :flag[i] = 0flagloss = flag[i-1]lossflag = 0continueif EMA[i - 1] > EMA[i-2] and flagloss != 1:flag[i] = 1flagloss = 0if EMA[i - 1] < EMA[i-2] and flagloss != -1:flag[i] = -1flagloss = 0if flag[i] == flag[i-1] :lossflag = lossflag + profitrate[i]*flag[i]lossflag = min(lossflag,0)else:lossflag = 0strategy_rate = profitrate * flagnav = (1+strategy_rate).cumprod()cumrate = nav - 1totalprofit = nav[len(nav)-1] - 1# 交易次数/择时次数num = 0for i in range(len(flag) - 1):if (flag[i+1]!= flag[i]) :num+=1Sharp = strategy_rate.mean()/strategy_rate.std()* 250**0.5MDD = max(1-nav/nav.cummax())return cumrate, num, totalprofit, flag, Sharp, MDD
拓展后高阶矩交易模型的交易函数
交易逻辑见报告第14页
k:阈值
其他参数含义同上
def BuySell_1(profitrate,Moment,EMA,k):flag = np.zeros(len(profitrate))cumrate = np.ones(len(profitrate))lossflag = 0 # 计算单次择时损失,超过10%平仓flagloss = 0 # 单次亏损超过10%时的信号方向# 计算最优alphaalpha_all = np.arange(0.05,0.5,0.05)for i in range(2,len(profitrate)):if i%90 ==0 :cumrate_all = [qiexian(list(profitrate[i - 90:i]),Moment[i - 90:i].values,getEMA(Moment,alpha_all[j])[i - 90:i].values) for j in range(len(alpha_all))]# 取使90天内累计收益率最大的alpha作为后续计算的alpha,并计算相应的EMAalpha = alpha_all[np.argmax(cumrate_all)]EMA = getEMA(Moment,alpha)if lossflag < -0.1 :flag[i] = 0flagloss = flag[i-1]lossflag = 0continueif EMA[i - 1] > EMA[i-2]*(1+k) and flagloss != 1:flag[i] = 1flagloss = 0if EMA[i - 1] < EMA[i-2]*(1-k) and flagloss != -1:flag[i] = -1flagloss = 0if EMA[i - 1] > EMA[i-2]*(1-k) and EMA[i - 1] < EMA[i-2]*(1+k) :flag[i] = 0flagloss = 0if flag[i] == flag[i-1] :lossflag = lossflag + profitrate[i]*flag[i]lossflag = min(lossflag,0)else:lossflag = 0strategy_rate = profitrate * flagnav = (1+strategy_rate).cumprod()cumrate = nav - 1totalprofit = nav[len(nav)-1] - 1# 交易次数/择时次数num = 0for i in range(len(flag) - 1):if (flag[i+1]!= flag[i]) :num+=1Sharp = strategy_rate.mean()/strategy_rate.std()* 250**0.5MDD = max(1-nav/nav.cummax())return cumrate, num, totalprofit, flag, Sharp, MDD
回测1:基本的高阶矩择时模型,EMA 初始 alpha=0.4
回测2:阈值k=1%,其他同上
回测3:阈值k=2%,其他同上
cumrate,num,totalprofit,flag,Sharp,MDD = BuySell(EarnRate,Moment_20_5,EMA_04)cumrate_01,num_01,totalprofit_01,flag_02,Sharp_01,MDD_01 = BuySell_1(EarnRate,Moment_20_5,EMA_04,0.01)cumrate_02,num_02,totalprofit_02,flag_02,Sharp_02,MDD_02 = BuySell_1(EarnRate,Moment_20_5,EMA_04,0.02)
print('回测1交易次数为:%s' % num)print('回测2交易次数为:%s' % num_01)print('回测3交易次数为:%s' % num_02)print('')print('回测1总收益率为:%s%%' % (totalprofit*100))print('回测2总收益率为:%s%%' % (totalprofit_01*100))print('回测3总收益率为:%s%%' % (totalprofit_02*100))print('')print('回测1夏普比为:%s' % Sharp)print('回测2夏普比为:%s' % Sharp_01)print('回测3夏普比为:%s' % Sharp_02)print('')print('回测1最大回撤为:%s%%' % (MDD*100))print('回测2最大回撤为:%s%%' % (MDD_01*100))print('回测3最大回撤为:%s%%' % (MDD_02*100))
回测1交易次数为:298
回测2交易次数为:353
回测3交易次数为:402
回测1总收益率为:870.434213293%
回测2总收益率为:859.177156583%
回测3总收益率为:571.69369844%
回测1夏普比为:0.8071530425449338
回测2夏普比为:0.8120229809371885
回测3夏普比为:0.7049768658906784
回测1最大回撤为:40.25782265430625%
回测2最大回撤为:34.72891044547697%
回测3最大回撤为:39.44870302175746%
以HS300为基准,回测1累计收益率展示
HS = plt.subplot(111)
HS.plot(HS300.close)
HS.set_xticks(xticks)
HS.set_xticklabels(HS300.date[xticks],rotation=60)
ax2 = HS.twinx()
ax2.plot(cumrate, 'r')
不同阈值下的累计净值曲线对比
HS = plt.subplot(111)
HS.plot(cumrate,'r',cumrate_01,'g',cumrate_02,'k')
HS.set_xticks(xticks)
HS.set_xticklabels(HS300.date[xticks],rotation=60)
plt.legend(['0%','1%','2%'])
plt.show()
总体来看,策略有明显超额收益的,但与文章结果出入较大,说明代码中可能有一些与报告原意不符的地方,此外,报告只回测到2015年,而从上图可以看出,策略2016年之后出现了较大回撤。