@1007477689
2020-03-23T14:52:26.000000Z
字数 8335
阅读 604
Python
Matplotlib 是 Python 的绘图库。 它可与 NumPy 一起使用,提供了一种有效的 MatLab 开源替代方案,也可以和图形工具包一起使用。和Pandas、Numpy并成为数据科学三兄弟。
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 30)
plt.plot(x, np.sin(x))
plt.plot(x, np.sin(x), '-o')
plt.scatter(x, np.sin(x))
rng = np.random.RandomState(0)
x = rng.randn(100)
y = rng.randn(100)
colors = rng.rand(100)
sizes = 1000 * rng.rand(100)
plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,
cmap='viridis')
plt.colorbar()
# 展示色阶
x = np.linspace(0, 10, 50)
dy = 0.8
y = np.sin(x) + dy * np.random.randn(50)
plt.errorbar(x, y, yerr = dy, fmt = '.k')
x = [1,2,3,4,5,6,7,8]
y = [3,1,4,5,8,9,7,2]
label=['A','B','C','D','E','F','G','H']
plt.bar(x, y, tick_label = label)
plt.barh(x,y,tick_label = label)
data = np.random.randn(1000)
plt.hist(data)
plt.hist(data, bins = 30, histtype = 'stepfilled', density = True)
plt.show()
x1 = np.random.normal(0, 0.8, 1000)
x2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)
kwargs = dict(alpha = 0.3, bins = 40, density = True)
plt.hist(x1, **kwargs)
plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs)
mean = [0, 0]
cov = [[1, 1], [1, 2]]
x, y = np.random.multivariate_normal(mean, cov, 10000).T
plt.hist2d(x, y, bins = 30)
plt.hexbin(x, y, gridsize=30)
x = np.linspace(0,10,100)
y = np.sin(x)
plt.plot(x, y, ls = '--')
x = np.linspace(0,10,100)
y = np.sin(x)
plt.plot(x, y)
plt.ylim(-1.5, 1.5)
x = np.linspace(0.05, 10, 100)
y = np.sin(x)
plt.plot(x, y, label = 'sin(x)')
plt.xlabel('variable x')
plt.ylabel('value y')
x = np.linspace(0.05, 10, 100)
y = np.sin(x)
plt.plot(x, y, label = 'sin(x)')
plt.title('三角函数')
x = np.linspace(0.05, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.grid()
x = np.linspace(0.05, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.axhline(y = 0.8, ls = '--', c = 'r')
x = np.linspace(0.05, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.axvspan(xmin = 4, xmax = 6, facecolor = 'r', alpha = 0.3)
# 垂直x轴
plt.axhspan(ymin = -0.2, ymax = 0.2, facecolor = 'y', alpha = 0.3)
# 垂直y轴
x = np.linspace(0.05, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.text(3.2, 0, 'sin(x)', weight = 'bold', color = 'r')
x = np.linspace(0.05, 10, 100)
y = np.sin(x)
plt.plot(x, y)
plt.annotate('maximum',xy=(np.pi/2, 1),xytext=(np.pi/2+1, 1),
weight = 'bold', color = 'r',
arrowprops = dict(arrowstyle='->', connectionstyle='arc3', color='r'))
x = np.linspace(0, 10, 1000)
fig, ax = plt.subplots()
ax.plot(x, np.sin(x), label='sin')
ax.plot(x, np.cos(x), '--', label='cos')
ax.legend()
ax.legend(loc = 'upper left', frameon = False)
fig
ax.legend(frameon = False, loc = 'lower center', ncol = 2)
fig
y = np.sin(x[:, np.newaxis] + np.pi * np.arange(0, 2, 0.5))
lines = plt.plot(x, y)
# lines 是 plt.Line2D 类型的实例的列表
plt.legend(lines[:2], ['first', 'second']);
# 第二个方法
#plt.plot(x, y[:, 0], label='first')
#plt.plot(x, y[:, 1], label='second')
#plt.plot(x, y[:, 2:])
#plt.legend(framealpha=1, frameon=True)
fig, ax = plt.subplots()
lines = []
styles = ['-', '--', '-.', ':']
x = np.linspace(0, 10, 1000)
for i in range(4):
lines += ax.plot(x, np.sin(x - i * np.pi / 2),styles[i], color='black')
ax.axis('equal')
# 设置第一组标签
ax.legend(lines[:2], ['line A', 'line B'],
loc='upper right', frameon=False)
# 创建第二组标签
from matplotlib.legend import Legend
leg = Legend(ax, lines[2:], ['line C', 'line D'],
loc='lower right', frameon=False)
ax.add_artist(leg);
x = np.linspace(0, 10, 1000)
I = np.sin(x) * np.cos(x[:, np.newaxis])
plt.imshow(I)
plt.colorbar();
29.改变配色为'gray'
plt.imshow(I, cmap='gray');
30.将色阶分成6个离散值显示
plt.imshow(I, cmap=plt.cm.get_cmap('Blues', 6))
plt.colorbar()
plt.clim(-1, 1);
六、多子图
31.在一个1010的画布中,(0.65,0.65)的位置创建一个0.20.2的子图
ax1 = plt.axes()
ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])
32.在2个子图中,显示sin(x)和cos(x)的图像
fig = plt.figure()
ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4], ylim=(-1.2, 1.2))
ax2 = fig.add_axes([0.1, 0.1, 0.8, 0.4], ylim=(-1.2, 1.2))
x = np.linspace(0, 10)
ax1.plot(np.sin(x));
ax2.plot(np.cos(x));
33.用for创建6个子图,并且在图中标识出对应的子图坐标
for i in range(1, 7):
plt.subplot(2, 3, i)
plt.text(0.5, 0.5, str((2, 3, i)),fontsize=18, ha='center')
34.设置相同行和列共享x,y轴
fig, ax = plt.subplots(2, 3, sharex='col', sharey='row')
35.用[]的方式取出每个子图,并添加子图座标文字
for i in range(2):
for j in range(3):
ax[i, j].text(0.5, 0.5, str((i, j)),fontsize=18, ha='center')
fig
36.组合绘制大小不同的子图,样式如下
grid = plt.GridSpec(2, 3, wspace=0.4, hspace=0.3)
plt.subplot(grid[0, 0])
plt.subplot(grid[0, 1:])
plt.subplot(grid[1, :2])
plt.subplot(grid[1, 2]);
37.显示一组二维数据的频度分布,并分别在x,y轴上,显示该维度的数据的频度分布
mean = [0, 0]
cov = [[1, 1], [1, 2]]
x, y = np.random.multivariate_normal(mean, cov, 3000).T
fig = plt.figure(figsize=(6, 6))
grid = plt.GridSpec(4, 4, hspace=0.2, wspace=0.2)
main_ax = fig.add_subplot(grid[:-1, 1:])
y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[], sharey=main_ax)
x_hist = fig.add_subplot(grid[-1, 1:], yticklabels=[], sharex=main_ax)
main_ax.scatter(x, y,s=3,alpha=0.2)
x_hist.hist(x, 40, histtype='stepfilled',
orientation='vertical')
x_hist.invert_yaxis()
y_hist.hist(y, 40, histtype='stepfilled',
orientation='horizontal')
y_hist.invert_xaxis()
七、三维图像
38.创建一个三维画布
from mpl_toolkits import mplot3d
fig = plt.figure()
ax = plt.axes(projection='3d')
39.绘制一个三维螺旋线
ax = plt.axes(projection='3d')
zline = np.linspace(0, 15, 1000)
xline = np.sin(zline)
yline = np.cos(zline)
ax.plot3D(xline, yline, zline);
40.绘制一组三维点
ax = plt.axes(projection='3d')
zdata = 15 * np.random.random(100)
xdata = np.sin(zdata) + 0.1 * np.random.randn(100)
ydata = np.cos(zdata) + 0.1 * np.random.randn(100)
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens');
八、宝可梦数据集可视化
41.展示前5个宝可梦的Defense,Attack,HP的堆积条形图
pokemon = df['Name'][:5]
hp = df['HP'][:5]
attack = df['Attack'][:5]
defense = df['Defense'][:5]
ind = [x for x, _ in enumerate(pokemon)]
plt.figure(figsize=(10,10))
plt.bar(ind, defense, width=0.8, label='Defense', color='blue', bottom=attack+hp)
plt.bar(ind, attack, width=0.8, label='Attack', color='gold', bottom=hp)
plt.bar(ind, hp, width=0.8, label='Hp', color='red')
plt.xticks(ind, pokemon)
plt.ylabel("Value")
plt.xlabel("Pokemon")
plt.legend(loc="upper right")
plt.title("5 Pokemon Defense & Attack & Hp")
plt.show()
42.展示前5个宝可梦的Attack,HP的簇状条形图
N = 5
pokemon_hp = df['HP'][:5]
pokemon_attack = df['Attack'][:5]
ind = np.arange(N)
width = 0.35
plt.bar(ind, pokemon_hp, width, label='HP')
plt.bar(ind + width, pokemon_attack, width,label='Attack')
plt.ylabel('Values')
plt.title('Pokemon Hp & Attack')
plt.xticks(ind + width / 2, (df['Name'][:5]),rotation=45)
plt.legend(loc='best')
plt.show()
43.展示前5个宝可梦的Defense,Attack,HP的堆积图
x = df['Name'][:4]
y1 = df['HP'][:4]
y2 = df['Attack'][:4]
y3 = df['Defense'][:4]
labels = ["HP ", "Attack", "Defense"]
fig, ax = plt.subplots()
ax.stackplot(x, y1, y2, y3)
ax.legend(loc='upper left', labels=labels)
plt.xticks(rotation=90)
plt.show()
44.公用x轴,展示前5个宝可梦的Defense,Attack,HP的折线图
x = df['Name'][:5]
y1 = df['HP'][:5]
y2 = df['Attack'][:5]
y3 = df['Defense'][:5]
fig, (ax1, ax2,ax3) = plt.subplots(3, sharey=True)
ax1.plot(x, y1, 'ko-')
ax1.set(title='3 subplots', ylabel='HP')
ax2.plot(x, y2, 'r.-')
ax2.set(xlabel='Pokemon', ylabel='Attack')
ax3.plot(x, y3, ':')
ax3.set(xlabel='Pokemon', ylabel='Defense')
plt.show()
45.展示前15个宝可梦的Attack,HP的折线图
plt.plot(df['HP'][:15], '-r',label='HP')
plt.plot(df['Attack'][:15], ':g',label='Attack')
plt.legend();
46.用scatter的x,y,c属性,展示所有宝可梦的Defense,Attack,HP数据
x = df['Attack']
y = df['Defense']
colors = df['HP']
plt.scatter(x, y, c=colors, alpha=0.5)
plt.title('Scatter plot')
plt.xlabel('HP')
plt.ylabel('Attack')
plt.colorbar();
47.展示所有宝可梦的攻击力的分布直方图,bins=10
x = df['Attack']
num_bins = 10
n, bins, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5)
plt.title('Histogram')
plt.xlabel('Attack')
plt.ylabel('Value')
plt.show()
48.展示所有宝可梦Type 1的饼图
plt.figure(1, figsize=(8,8))
df['Type 1'].value_counts().plot.pie(autopct="%1.1f%%")
plt.legend()
49.展示所有宝可梦Type 1的柱状图
ax = df['Type 1'].value_counts().plot.bar(figsize = (12,6),fontsize = 14)
ax.set_title("Pokemon Type 1 Count", fontsize = 20)
ax.set_xlabel("Pokemon Type 1", fontsize = 20)
ax.set_ylabel("Value", fontsize = 20)
plt.show()
50.展示综合评分最高的10只宝可梦的系数间的相关系数矩阵
import seaborn as sns
top_10_pokemon=df.sort_values(by='Total',ascending=False).head(10)
corr=top_10_pokemon.corr()
fig, ax=plt.subplots(figsize=(10, 6))
sns.heatmap(corr,annot=True)
ax.set_ylim(9, 0)
plt.show()