@newton2ndlaw
2016-05-09T18:41:16.000000Z
字数 2284
阅读 855
张琦 2013301510086
第十一次作业
作业 4.7 4.9 4.11
选择4.9题,利用python观察不为时椭圆轨道的进动。
一般情况下行星运动的数值为,行星会进行圆或者椭圆运动。当数值偏离时,轨道会不重合会进动。本次作业就是研究在这种情况下的数值和进动速度之间的关系。
作业L1 4.9题
In this section we saw that orbits are unstable for any value of that is not precisely 2 in (4.12). A related question, which we did not address (until now), is how unstable an orbit might be. That is, how long will it take for an unstable orbit to become obvious. The answer to this question depends on the nature of the orbit. If the initial velocity is chosen so as to make the orbit precisely circular, then the value of in (4.12) will make absolutely no difference. Of course, in practice it is impossible to construct an orbit that is exactly circular, so the instabilities when will always be apparent given enough time. Even so, orbits that start out as nearly circular will remain almost stable for a longer period than those that are highly elliptical. Investigate this by studying different values of (say ) and comparing the behaviro with different values of the ellipticity of the orbit. You should find that the orientation of orbits that are more nearly circular will rotate more slowly than those taht are highly elliptical.
基本原理,根据课本CHAPTER 4,可知球的运动方程为:
得到递推关系:
根据以上递推公式,即可编写程序。本次作业的单位均与课本上相同,长度的单位是,时间单位是,速度单位是。
程序的特性Code
初始条件 , , , ,
初始条件 , , , ,
初始条件 , , , ,
程序的特性Code
以下给出一个例子,初始条件 , , , ,
更方便更直观的观察对轨道旋转速度的影响
程序的特性代码链接
输出内容
通过对输出内容以及对图像的分析可以看出在超过之后行星的轨道便不会闭合了,大于的部分是没有意义的,这点在输出的数据中可以看出来。在之间,随着的增大,轨道的进动速度也越来越快。夹角的计算是计算以内的夹角。由于计算角度方法和图像显示还有计算精度等原因,图像在部分位置会出现下降以及反向,并且的部分图像失真严重,其实按照理论分析角度以及角度的变化速度都是在不断增大的。
提高精度过后的结果。
进动角度随着的增大而不断增大,角度的变化速度也随着的增大而不断增大,增大到一定()值之后轨道不再闭合。
内容原创。
参考资料只有课本。