@ljt12138
2017-05-10T21:25:10.000000Z
字数 2332
阅读 803
给定一组基函数
原问题可以表述成矩阵形式:
则误差矩阵:
最小化:
依次对
解得:
如果选取幂函数作为基函数,则是用多项式拟合一个函数。
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 505;
double A[MAXN][MAXN], AT[MAXN][MAXN];
double B[MAXN][MAXN], M[MAXN][MAXN], R[MAXN][MAXN];
void mul(double A[MAXN][MAXN], double B[MAXN][MAXN], int n, int m, int q)
{
memset(M, 0, sizeof M);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= q; j++)
for (int k = 1; k <= m; k++)
M[i][j] += A[i][k]*B[k][j];
}
void T(double A[MAXN][MAXN], int n, int m)
{
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
M[j][i] = A[i][j];
}
void inverse(double A[MAXN][MAXN], int n)
{
memcpy(M, A, sizeof A), memset(R, 0, sizeof R);
for (int i = 1; i <= n; i++) R[i][i] = 1;
for (int i = 1; i <= n; i++) {
double mx = A[i][i];
int id = i;
for (int j = i+1; j <= n; j++)
if (A[j][i] > mx)
mx = A[j][i], id = i;
swap(A[i], A[id]);
for (int j = 1; j <= n; j++) {
if (j == i) continue;
double v = -M[j][i]/M[i][i];
for (int k = 1; k <= n; k++)
M[j][k] += M[i][k]*v, R[j][k] += R[i][k]*v;
}
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++)
R[i][j] /= M[i][i];
}
memcpy(M, R, sizeof R);
}
double x[MAXN], y[MAXN], ATy[MAXN];
int n, k;
int main()
{
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++)
scanf("%lf%lf", &x[i], &y[i]);
for (int i = 1; i <= n; i++) {
A[i][1] = 1;
for (int j = 2; j <= k; j++)
A[i][j] = A[i][j-1]*x[i];
}
T(A, n, k);
memcpy(AT, M, sizeof M);
for (int i = 1; i <= k; i++) {
ATy[i] = 0;
for (int j = 1; j <= n; j++)
ATy[i] += AT[i][j]*y[j];
}
mul(AT, A, k, n, k);
memcpy(B, M, sizeof M);
inverse(B, k);
memcpy(B, M, sizeof M);
for (int i = 1; i <= k; i++) {
double c = 0;
for (int j = 1; j <= k; j++)
c += B[i][j]*ATy[j];
printf("%.3f\n", c);
}
return 0;
}