@ljt12138
2019-08-03T21:14:54.000000Z
字数 2073
阅读 506
构造
图论
不会欧拉回路怎么办啊【跑
考虑建一个额外的点,所有奇数点连过去跑一个欧拉回路,这样可以构造出一组路径,但不能保证长度为偶数。
考虑进行这样一种操作,将相邻的边缩成对,即将两边的点不经过中点直接相连。如果这样操作可行,显然所有点的奇偶性不变,且在新图上跑欧拉回路可以得到偶数长度的路径。
下面证明这样的操作可行:设表示将子树中所有树边和非树边合并,(如果必须)剩下与其父亲的连边。先对于所有的儿子调用,然后将剩余的边(树边或非树边)两两合并,如果剩下一条,将其和的父亲合并;否则剩下与父亲的边。当这个过程执行到根时,所有的边就合并好了(因为只有可能剩下一条或全部合并成功,而边数为偶数,因此必然全部合并成功)。
于是在新图上跑欧拉回路即可。
写起来像吃了屎一样。。。不过思路很优雅,算法即证明【是不是可以给MO当毒瘤题啊2333
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 500005;
inline int read()
{
int a = 0, c;
do c = getchar(); while (!isdigit(c));
while (isdigit(c)) {
a = a*10+c-'0';
c = getchar();
}
return a;
}
int cnt = 0;
struct node {
int to, next, x, y;
} edge[MAXN*2], e[MAXN*3];
int head[MAXN], top = -1;
int h[MAXN], tot = -1;
inline void push(int i, int j)
{ edge[++top] = (node) {j, head[i], 0, 0}, head[i] = top; }
inline void push2(int i, int j, int x, int y)
{
e[++tot] = (node) {j, h[i], x, y}, h[i] = tot;
e[++tot] = (node) {i, h[j], y, x}, h[j] = tot;
}
int vis[MAXN], v[MAXN], d[MAXN], n, m;
void dfs(int nd, int f, int t)
{
int last_to = 0, last_e = 0;
v[nd] = 1;
for (register int i = head[nd]; i != -1; i = edge[i].next) {
int to = edge[i].to;
if (to == f) continue;
if (!v[to]) dfs(to, nd, (i>>1)+1);
if (!vis[(i>>1)+1]) {
if (last_to) push2(last_to, to, last_e, (i>>1)+1), vis[(i>>1)+1] = vis[last_e] = 1, last_to = 0;
else last_to = to, last_e = (i>>1)+1;
}
}
if (last_to) {
push2(last_to, f, last_e, t);
vis[last_e] = vis[t] = 1;
}
}
int ans[MAXN*2], ans_top = 0;
int cur[MAXN];
void dfs_find(int nd)
{
for (int &i = cur[nd]; i != -1; i = e[i].next) {
int to = e[i].to;
if (vis[i>>1]) continue;
vis[i>>1] = 1;
int tmp = i;
dfs_find(to);
if (to == n+1) ans[++ans_top] = -nd;
else if (nd == n+1) ans[++ans_top] = -to;
else ans[++ans_top] = e[tmp].y, ans[++ans_top] = e[tmp].x;
}
}
int main()
{
memset(head, -1, sizeof head);
memset(h, -1, sizeof h);
n = read(), m = read();
for (register int i = 1; i <= m; i++) {
int u = read(), v = read();
d[u]++, d[v]++;
push(u, v), push(v, u);
}
dfs(1, 0, 0);
for (register int i = 1; i <= n; i++)
if (d[i]&1)
push2(i, n+1, -1, -1);
memcpy(cur, h, sizeof h);
memset(vis, 0, sizeof vis);
dfs_find(n+1);
int last = 1, cc = 0;
for (register int i = 2; i <= ans_top; i++) {
if (ans[i] < 0) {
if (last == 0) last = i;
else {
printf("%d %d %d\n", -ans[last], -ans[i], i-last-1), cc += i-last-1;
for (register int j = last+1; j < i; j++)
printf("%d ", ans[j]);
puts("");
last = 0;
}
}
}
return 0;
}