[关闭]
@nrailgun 2016-03-08T21:59:17.000000Z 字数 585 阅读 1623

MLE, MAP, and Beysian inference

机器学习


Maximum likelihood estimation

Likelihood function: L(θ)=ip(Xi,θ), estimate the θ maximizing L.

Example: Maximum likelihood estimation of Bern

B(xu)ux(1u)1x

L(Xu)=iuXi(1u)1Xi

and u^=SN is the solution.

Maximum a posteriori estimation

p(θx)=p(xθ)×p(θ)p(x)

Then MAP is

θ^MAP=argmaxθp(xθ)g(θ)

where g(θ) is the distribution of θ.

Bayesian Inference

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注