Dimensionality Reduction
机器学习
SVD
A[m×n]=U[m×r]Σ[r×r]VT[n×r]
 
where 
r is rank of 
A, 
U and 
V are column orthonormal (
UTU=I, 
VTV=I), and 
Σ a is diagonal matrix. 
U, 
Σ, and 
V are unique.
Dimensionality Reduction with SVD
B=USVT is a solution to minB∥A−B∥F, where sii=Σii(i=1,2,…,k) else sii=0. A rule-of-a-thumb: take 80%∼90% eigenvalues.