Dimensionality Reduction
机器学习
SVD
A[m×n]=U[m×r]Σ[r×r]VT[n×r]
where
r is rank of
A,
U and
V are column orthonormal (
UTU=I,
VTV=I), and
Σ a is diagonal matrix.
U,
Σ, and
V are unique.
Dimensionality Reduction with SVD
B=USVT is a solution to minB∥A−B∥F, where sii=Σii(i=1,2,…,k) else sii=0. A rule-of-a-thumb: take 80%∼90% eigenvalues.