UFLDL Summary
机器学习
Linear regression
J(θ)=12∑i(θTx(i)−y(i))2
∂J(θ)∂θj=∑ix(i)j(θTx(i)−y(i))
Logistic regression
P(y=1∣x)=hθ(x)=11+exp(−θTx)
P(y=0∣x)=1−hθ(x)
J(θ)=−∑i(y(i)log(hθ(x(i)))+(1−y(i))log(1−hθ(x(i))))
∇θJ(θ)=∑ix(i)(hθ(x(i))−y(i))
PCA
Σ=1m∑imx(i)(x(i))T
U=[u1,u2,…] is the eigenvector matrix, uT1x is the length of projection of x onto u1.
x=Uxrot, thus xrot=UTx.