EM
机器学习
EM Algorithm
Input: Observable variable Y, latent variable Z, joint-distribution P(Y,Z∣θ), conditional distribution P(Z∣Y,θ);
Output: Model parameter θ.
- Pick initial value θ(0);
- E: Calculate
Q(θ,θ(0))=EZ[logP(Y,Z∣θ)∣Y,θ(i)]=∑ZlogP(Y,Z∣θ)P(Z∣Y,θ(i))
- M: Find θ maximize Q and let
θ(i+1)=argmaxθQ(θ,θ(i))
- Repeat step E and step M until converge.