@lychee123
2017-09-17T19:33:26.000000Z
字数 1775
阅读 1255
图论
AAA不懂
Dinic算法简介
Dinic算法是网络流最大流的优化算法之一,每一步对原图进行分层,然后用DFS求增广路。时间复杂度是O(n^2*m)。
(From洋哥的模板先放这里,对dinic还不懂的我)
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100;
const int maxm = 4000;
struct EDGE
{
int to, next, flow;
EDGE(int to = 0, int next = 0, int flow = 0): to(to), next(next), flow(flow) {}
} edge[maxm];
int head[maxn], edgecnt, maxNodeNum;
void init()
{
memset(head, -1, sizeof(head));
edgecnt = 0;
maxNodeNum = 0;
}
void AddEdge(int s, int t, int c)
{
edge[edgecnt] = EDGE(t, head[s], c);
head[s] = edgecnt++;
edge[edgecnt] = EDGE(s, head[t], 0);
head[t] = edgecnt++;
maxNodeNum = max(maxNodeNum, max(s, t));
}
int layer[maxn];
int p[maxn];
bool GetLayer(int st, int en)
{
memset(layer, 0, sizeof(int) * (maxNodeNum + 1));
layer[st] = 1;
queue<int>q;
q.push(st);
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = head[u]; ~i; i = edge[i].next)
{
if(edge[i].flow == 0)
continue;
int v = edge[i].to;
if(layer[v])
continue;
layer[v] = layer[u] + 1;
q.push(v);
}
}
return layer[en];
}
int dfsFlow(int u, int en, int f)
{
int ret = 0;
if(u == en)
return f;
if(layer[u] >= layer[en])
return 0;
for(; ~p[u]; p[u] = edge[p[u]].next)
{
if(edge[p[u]].flow == 0)
continue;
int v = edge[p[u]].to;
if(layer[v] != layer[u] + 1)
continue;
int temp = dfsFlow(v, en, min(f, edge[p[u]].flow));
ret += temp;
f -= temp;
edge[p[u]].flow -= temp;
edge[p[u] ^ 1].flow += temp;
if(f == 0)
break;
}
return ret;
}
int dinic(int st, int en)
{
int ans = 0;
while(GetLayer(st, en))
{
memcpy(p, head, sizeof(int) * (maxNodeNum + 1));
ans += dfsFlow(st, en, INT_MAX);
}
return ans;
}
int main()
{
init();
int n, m;
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i++)
AddEdge(0, i, 1);
for(int i = n + 1; i <= m; i++)
AddEdge(i, m + 1, 1);
int u, v;
while(scanf("%d %d", &u, &v), u != -1 && v != -1)
{
AddEdge(u, v, 1);
}
int ans = dinic(0, m + 1);
if(ans == 0)
{
printf("No Solution!");
return 0;
}
printf("%d\n", ans);
for(int i = 1; i <= n; i++)
for(int j = head[i]; ~j; j = edge[j].next)
if(edge[j].to > n && edge[j].flow == 0)
{
printf("%d %d\n", i, edge[j].to);
break;
}
return 0;
}