@oliver1995
2016-10-24T14:04:22.000000Z
字数 2654
阅读 724
- use python to do homework 2.10
- add the air resistance and the wind velocity
- Genenralize the program developed for the previous problem so that it can deal with situations in which the target is at a different altitude than the cannon.Consider cases in which the target is higher and lower than the cannon.Also investigate how the minimum firing velocity required to hit the target varies as the altitude of the target is varied.(consider the wind velocity)
First considering the wind velosity
import pylab as pl
from math import *
class cannon:
def __init__(self,init_v=100,B_m=0.00004,theta = 60,
init_x=0,init_y=0,time_step=0.1,wind_velocity=-10):
self.vx = [init_v*cos(theta*2*pi/360)]
self.vy = [init_v*sin(theta*2*pi/360)]
self.x = [init_x]
self.y = [init_y]
self.t = [0]
self.B_m = B_m
self.win = wind_velocity
self.dt = time_step
def run(self):
while self.y[-1]>=0:
self.x.append(self.x[-1] + self.dt * self.vx[-1])
self.y.append(self.y[-1] + self.dt * self.vy[-1])
f=sqrt((self.vx[-1]-self.win)**2+self.vy[-1]**2) * self.B_m
self.vx.append(self.vx[-1] - self.dt * f *(self.vx[-1]-self.win))
self.vy.append(self.vy[-1] - self.dt * (9.8 + f *self.vy[-1]))
def show_results(self):
pl.plot(self.x, self.y,color="black",
linestyle="-.",label="headwind")
pl.xlabel('x(m)')
pl.ylabel('y(m)')
pl.legend(loc='upper right')
pl.ylim(0)
pl.show()
a = cannon()
a.run()
a.show_results()
Then considering the altitude and height
when height =-100:
code:
import pylab as pl
import math
class cannon:
def __init__(self,init_v=100,B_m=0.00004,theta = 35,
init_x=0,init_y=0,time_step=0.1,wind_velocity=10,
a_0=0.0065, alpha_0=2.5, temp_0=298.0,height=-100):
self.vx = [init_v*math.cos(theta*2*math.pi/360)]
self.vy = [init_v*math.sin(theta*2*math.pi/360)]
self.x = [init_x]
self.y = [init_y]
self.t = [0]
self.B_m = B_m
self.a =a_0
self.alpha=alpha_0
self.temp=temp_0
self.win = wind_velocity
self.height=height
self.dt = time_step
def run(self):
while self.y[-1]>=self.height:
self.x.append(self.x[-1] + self.dt * self.vx[-1])
self.y.append(self.y[-1] + self.dt * self.vy[-1])
rho = (1- self.a *self.y[-1]/ self.temp ) ** self.alpha
f=math.sqrt((self.vx[-1]-self.win)**2+self.vy[-1]**2) * self.B_m * rho
self.vx.append(self.vx[-1] - self.dt * f *(self.vx[-1]-self.win))
self.vy.append(self.vy[-1] - self.dt * (9.8 + f *self.vy[-1]))
def show_results(self):
pl.plot(self.x, self.y,color="blue",
linestyle="-", label="35")
pl.xlabel('x(m)')
pl.ylabel('y(m)')
pl.legend(loc='upper right')
pl.ylim(-100)
pl.show()
a = cannon()
a.run()
a.show_results()
when height =100m:
- From the picture, we can easily see that when height is -100, it is that the farthermost the cannon hit,a little smaller than 45°. And when the heigtt is 100, hit the farthermost, a little biger than 45°.
- Adding some realistic factor make the code more comflex, but the model will be more accurate
- Thanks to teacher cai's ppt.