@myecho
2018-05-26T10:06:44.000000Z
字数 3927
阅读 1076
Kafka
https://blog.csdn.net/lizhitao/article/details/23743821
分析过程分为以下4个步骤:
topic中partition存储分布
partiton中文件存储方式
partiton中segment文件存储结构
在partition中如何通过offset查找message
通过上述4过程详细分析,我们就可以清楚认识到kafka文件存储机制的奥秘。
2.1 topic中partition存储分布
假设实验环境中Kafka集群只有一个broker,xxx/message-folder为数据文件存储根目录,在Kafka broker中server.properties文件配置(参数log.dirs=xxx/message-folder),例如创建2个topic名称分别为report_push、launch_info, partitions数量都为partitions=4
存储路径和目录规则为:
xxx/message-folder
|--report_push-0
|--report_push-1
|--report_push-2
|--report_push-3
|--launch_info-0
|--launch_info-1
|--launch_info-2
|--launch_info-3
在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。
如果是多broker分布情况,请参考kafka集群partition分布原理分析
2.2 partiton中文件存储方式
下面示意图形象说明了partition中文件存储方式:
每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。
每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。这样做的好处就是能快速删除无用文件,有效提高磁盘利用率。
2.3 partiton中segment文件存储结构
读者从2.2节了解到Kafka文件系统partition存储方式,本节深入分析partion中segment file组成和物理结构。
segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件.
segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。
下面文件列表是笔者在Kafka broker上做的一个实验,创建一个topicXXX包含1 partition,设置每个segment大小为500MB,并启动producer向Kafka broker写入大量数据,如下图2所示segment文件列表形象说明了上述2个规则:
以上述图2中一对segment file文件为例,说明segment中index<—->data file对应关系物理结构如下:
https://tech.meituan.com/img/kafka-fs-design-theory/kafka-fs-index-correspond-data.png
上述图中索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。
其中以索引文件中元数据3,497为例,依次在数据文件中表示第3个message(在全局partiton表示第368772个message)、以及该消息的物理偏移地址为497。
从上述图3了解到segment data file由许多message组成,下面详细说明message物理结构如下:
参数说明:
关键字 解释说明
8 byte offset 在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message
4 byte message size message大小
4 byte CRC32 用crc32校验message
1 byte “magic" 表示本次发布Kafka服务程序协议版本号
1 byte “attributes" 表示为独立版本、或标识压缩类型、或编码类型。
4 byte key length 表示key的长度,当key为-1时,K byte key字段不填
K byte key 可选
value bytes payload 表示实际消息数据。
2.4 在partition中如何通过offset查找message
例如读取offset=368776的message,需要通过下面2个步骤查找。
第一步查找segment file
上述图2为例,其中00000000000000000000.index表示最开始的文件,起始偏移量(offset)为0.第二个文件00000000000000368769.index的消息量起始偏移量为368770 = 368769 + 1.同样,第三个文件00000000000000737337.index的起始偏移量为737338=737337 + 1,其他后续文件依次类推,以起始偏移量命名并排序这些文件,只要根据offset 二分查找文件列表,就可以快速定位到具体文件。
当offset=368776时定位到00000000000000368769.index|log
第二步通过segment file查找message
通过第一步定位到segment file,当offset=368776时,依次定位到00000000000000368769.index的元数据物理位置和00000000000000368769.log的物理偏移地址,然后再通过00000000000000368769.log顺序查找直到offset=368776为止。
从上述图3可知这样做的优点,segment index file采取稀疏索引存储方式,它减少索引文件大小,通过mmap可以直接内存操作,稀疏索引为数据文件的每个对应message设置一个元数据指针,它比稠密索引节省了更多的存储空间,但查找起来需要消耗更多的时间。
3 Kafka文件存储机制–实际运行效果
实验环境:
Kafka集群:由2台虚拟机组成
cpu:4核
物理内存:8GB
网卡:千兆网卡
jvm heap: 4GB
详细Kafka服务端配置及其优化请参考:kafka server.properties配置详解
从上述图5可以看出,Kafka运行时很少有大量读磁盘的操作,主要是定期批量写磁盘操作,因此操作磁盘很高效。这跟Kafka文件存储中读写message的设计是息息相关的。Kafka中读写message有如下特点:
写message
消息从java堆转入page cache(即物理内存)。
由异步线程刷盘,消息从page cache刷入磁盘。
读message
消息直接从page cache转入socket发送出去。
当从page cache没有找到相应数据时,此时会产生磁盘IO,从磁
盘Load消息到page cache,然后直接从socket发出去
4.总结
Kafka高效文件存储设计特点
Kafka把topic中一个parition大文件分成多个小文件段,通过多个小文件段,就容易定期清除或删除已经消费完文件,减少磁盘占用。
通过索引信息可以快速定位message和确定response的最大大小。
通过index元数据全部映射到memory,可以避免segment file的IO磁盘操作。
通过索引文件稀疏存储,可以大幅降低index文件元数据占用空间大小。
Kafka基于高吞吐率和效率考虑,并没有使用第三方网络框架,而且自己基于java nio封装的,总体网络模型如下:
Broker的内部处理流水线化,分为多个阶段来进行(SEDA),以提高吞吐量和性能,尽量避免Thead盲等待,以下为过程说明。
https://img-blog.csdn.net/20160827001436061
Accept Thread负责与客户端建立连接链路,然后把Socket轮转交给Process Thread
Process Thread负责接收请求和响应数据,Process Thread每次基于Selector事件循环,首先从Response Queue读取响应数据,向客户端回复响应,然后接收到客户端请求后,读取数据放入Request Queue。
Work Thread负责业务逻辑、IO磁盘处理等,负责从Request Queue读取请求,并把处理结果放入Response Queue中,待Process Thread发送出去。
https://blog.csdn.net/lizhitao/article/details/39499283
https://www.zhihu.com/question/56172498/answer/148006508?utm_source=wechat_session&utm_medium=social