@myecho
2019-05-27T18:17:45.000000Z
字数 1113
阅读 676
LeetCode
最长回文子串
最长回文子序列
解题思路:
1. dp,两种思路,一种是仅dp bool,另外一种是dp具体的值
2. 枚举中心节点,暴力生成所有的
3. Manacher's Algorithm
// 子序列
int longestPalindrome(string s) {
int n = s.size();
for (int i = 0; i < n; ++i) dp[i][i] = 1;
for (int i = 0; i < n - 1; ++i) dp[i][i+1] = s[i] == s[i+1]?2:1;
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 2; j < n; ++j) { // j > i
if (s[i] == s[j]) dp[i][j] = dp[i+1][j-1]+2;
else dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
}
}
return dp[0][n-1]; //注意这里只有一个字符串
}
// 子串
for (size_t i = 0; i < s.size(); i++) {
f[i][i] = true;
for(size_t j=0; j<i; j++){ //[j,i]
f[j][i] = (s[j] == s[i] && (i - j < 2 || f[j + 1][i - 1]));
if (f[j][i] && max_len < (i - j + 1)) {
max_len = i - j + 1;
start = j;
}
}
}
// 中心扩展模板
class Solution {
public int countSubstrings(String S) {
int N = S.length(), ans = 0;
for (int center = 0; center < 2*N-1; ++center) {
int left = center / 2;
int right = left + center % 2;
while (left >= 0 && right < N && S.charAt(left) == S.charAt(right)) {
ans++;
left--;
right++;
}
}
return ans;
}
}
允许重复
1. https://leetcode.com/problems/count-different-palindromic-subsequences/discuss/272297/DP-C%2B%2B-Clear-solution-explained
2. 中心扩展的思路,应该更简单
不允许重复
https://www.cnblogs.com/grandyang/p/7942040.html
也基本上都要利用前边的解法去生成辅助信息等。