@RunZhi
2016-09-15T22:53:07.000000Z
字数 10269
阅读 2964
密码学
编程
代数
GF称为伽罗瓦域,又称有限域.定义详见Galois field.本文讨论GF(2^8)下加减乘除,求逆和离散对数的程序实现。
操作系统:ubuntu 14.04
编程语言:C++
编译器:g++
以下介绍GF(2^8)各个部分实现细节。
由于要多次使用字节类型,因此在本头文件中作一个宏定义
#define u8 unsigned char
由于会设计到简单的多项式除法,因此用一个结构体保存作除后得到的商和余数.
struct quorem
{
u8 first; // quotient
u8 next; // remainder
quorem(u8 i, u8 j){ first = i ; next = j; }
};
为方便使用,定义一个类以表达GF(2^8)元素
class GF_eight
{
// addition
inline friend GF_eight operator+(const GF_eight& i, const GF_eight& j);
// subtraction
inline friend GF_eight operator-(const GF_eight& i, const GF_eight& j);
// multiplication
friend GF_eight operator*(const GF_eight& i, const GF_eight& j);
// division
friend GF_eight operator/(const GF_eight& i, const GF_eight& j);
public:
// Constructor
GF_eight(u8 V = 0)
{
this->Value = V;
}
GF_eight(const GF_eight& V)
{
this->Value = V.Value;
}
// return value
u8 getValue() const { return this->Value; }
// Set the Value
void setValue(u8 V) { this->Value = V;}
// Check if it is a generator of GF(2^8)
bool is_gen() const;
// Obtain the inverse element
GF_eight inverse() const;
//Obtain the g^n
GF_eight power(u8 n) const;
//Obtain the dlog based g
GF_eight log(const GF_eight& g) const;
private:
u8 Value;
};
其中声明了暂时已实现的元素的操作.private域中的Value是实际保存的值.
中的元素可以看为一个位向量.由于系数是模2的,因此可以把加法看为异或,同样减法也是异或.
inline GF_eight operator+(const GF_eight& i, const GF_eight& j)
{
return GF_eight(i.Value ^ j.Value);
}
inline GF_eight operator-(const GF_eight& i, const GF_eight& j)
{
return GF_eight(i.Value ^ j.Value);
}
稍微麻烦一点的是乘法,实际上执行乘法运算的话只需要按照我们平时的多项式乘法,其中注意模2,乘出来后得到的多项式还要模去的模多项式:
但这样执行似乎太慢了,我们可以考虑一下更快的乘法.
首先:在中代表零元素.因此有
(这里用了群的结合律)
首先,移位一次:
既然是,那似乎应该继续移位一次。但我们先不这么做.注意,我们知道了:.它等价于:
因此,
至此,我们计算出了,接下来继续计算也是相同的办法.
基于这样的思想,写出的程序
GF_eight operator*(const GF_eight& i, const GF_eight& j)
{
u8 lowest_bit = 0x01;
u8 highest_bit = 0x80;
u8 temp_j = j.Value;
u8 temp_res = i.Value;
u8 res = 0;
u8 flag;
if ( temp_j & lowest_bit )
res = temp_res;
temp_j >>= 1;
while( temp_j != 0 )
{
flag = temp_res & highest_bit;
temp_res <<= 1;
// Plus 27 if b_8 == 1( flag == 1 )
if( flag )
temp_res ^= XXX;
/* test code
printf("%x\n",temp_res);
*/
if(temp_j & lowest_bit)
res ^= temp_res;
temp_j >>= 1;
}
return GF_eight(res);
}
注意:程序执行并不严格按照我之前的例子,但思想是一样的。
在讲如何实现除法之前,首先要考虑求逆.因为我们不能进行普通的多项式除法,因为这是在模下的运算。而求了逆,除法也不过是一个乘法罢了.
由于是一个域,它对乘法运算构成一个交换群。我们可以参考数论里的EGCD算法(扩展欧几里德算法)进行求逆。
EGCD算法由于需要的篇幅不小,因此讲解请参考欧几里德算法与扩展欧几里德算法。注意,这个网站上虽然说的是上的EGCD算法,但是实际上,只要把域元素替换为,把相应的运算进行修改,对相应的变量类型进行一定的修改,得到的新算法就是适用于的EGCD算法.如果你看不懂这句话,那真的需要学点代数了。
求逆的代码在此:
GF_eight GF_eight::inverse() const
{
// Deal with the trivial cases
if( this->Value == 0)
{
printf("Zero element doesn't have inverse!\n");
return GF_eight(0);
}
if( this->Value == 1)
return GF_eight(1);
// Using Extended Algorithm
u8 r1 = 0x8D;
u8 r2 = this->Value;
u8 r3 = 0;
u8 v1 = 1;
u8 v2 = 0;
u8 v3 = 0;
u8 w1 = 0;
u8 w2 = 1;
u8 w3 = 0;
u8 q = 0;
quorem p(0,0);
GF_eight temp(0);
// Because we use the byte to implement poly_div. So we must
// deal with the highest bit of the 0x11B before using EGCD.
// The division is actually the same as the usual division. I just do some operation explicitly( Because we are just allowed to implement in bytes.)
p = poly_div(r1, r2);
q = p.first;
r3 = p.next;
r3 <<= 1;
r3 ^= 1;
q <<= 1;
p = poly_div(r3, r2);
q ^= p.first;
r3 = p.next;
/* test code
printf("q:%x\n",q);
printf("r3:%x\n",r3);
printf("v:%x\n",v3);
printf("w:%x\n\n",w3);
getchar();
*/
r1 = r2;
r2 = r3;
v1 = 0;
v2 = 1;
w1 = 1;
w2 = q;
// Using EGCD
while(1)
{
//Obtain the quotient and remainder
p = poly_div(r1, r2);
q = p.first;
r3 = p.next;
if( r3 == 0 ) break;
// The multiplication must be token in GF(2^8)
temp = GF_eight(q) * GF_eight(v2);
v3 = v1 ^ (temp.getValue());
temp = GF_eight(q) * GF_eight(w2);
w3 = w1 ^ (temp.getValue());
/* test code
printf("q:%x\n",q);
printf("r1:%x\n",r1);
printf("r2:%x\n",r2);
printf("r3:%x\n",r3);
printf("v:%x\n",v3);
printf("w:%x\n\n",w3);
getchar();
*/
r1 = r2;
r2 = r3;
v1 = v2;
v2 = v3;
w1 = w2;
w2 = w3;
}
return GF_eight((u8)w2);
代码很长,我并不擅长写很简洁的代码。。。关于代码的部分解释,我想注释里面已经说了。这里的代码用到了函数poly_div,这个函数的声明为:
static quorem poly_div(u8 ii, u8 jj)
声明为static是因为这个函数只是用于辅助求逆运算的,没必要被用在外面。这个函数完成的是两个字节变量的多项式除法运算 ,并把得到的商和余数保存到结构体quorem中。注意,我们执行的是普通的多项式除法。
完成了求逆之后,就可以直接进行除法运算了:
GF_eight operator/(const GF_eight& i, const GF_eight& j)
{
GF_eight temp = j.inverse();
return i * temp;
}
求离散对数的一种很普通的方法就是逐个穷尽进行寻找。但我们实际上可以做得精细一些.可以使用碰撞法
碰撞法的描述可参考:An Introduction to Mathematical Cryptography 的page80, Proposition 2.22:
这个算法正确性的证明显然不适合放在这篇文章这里,有想法的人可以自行搜索上面说的电子书进行学习。
同样地,这个原始的算法也是解决的离散对数的,但还是那句话,代数告诉我们这个算法可以移植到.
具体实现代码如下:
GF_eight GF_eight::log(const GF_eight_pack::GF_eight &g) const
{
if( !g.is_gen() )
{
printf("The input is not a generator!\n");
return 0;
}
GF_eight temp(1);
GF_eight h(this->Value);
// Using the simple algorithm:Collision method to solve g^x = h
int N = 255;
int n = sqrt(N)+1;
// list for finding Collision
u8 list[256];
memset(list, 0, 256);
// Computing g^0,g^1,...,g^n and record the index i
u8 i = 0;
do{
list[temp.getValue()] = i;
temp = temp * g;
i++;
}while( i <= n );
temp = temp.inverse(); // temp = g^-(n+1)
temp = temp * g; // temp = g^-n
i = 0;
u8 j = 0;
do{
i = list[h.getValue()];
if( i != 0)
break;
list[h.getValue()] = j;
h = h * temp;
j++;
}while( j <= n );
return i + (j*n);
}
这段代码里面包含了两个辅助函数 is_gen 和 power.它们一个是判断某元素是否是生成元,另一个是快速幂运算。它们的代码请参考后面的完整代码.
/*********************************************************************************
*FileName: gf.hpp
*Author: RunzhiZeng
*Version: 3.1
*Date: 16-09-12
*Description:
Implementation of add, sub, mul, div, inv and dlog of GF(2^8)
*Others:
For Computer Security course
*History:
1. 16-09-12 V3.0:
Implement the add, sub, mul and some other miscellaneous functions.
2. 16-09-13 V3.1:
Implement the inv, div and dlog function,also including the power and poly div functions.
**********************************************************************************/
#ifndef _GF_H_
#define _GF_H_
#include<cstdio>
#include<cmath>
#include<cstring>
namespace GF_eight_pack
{
#define u8 unsigned char
// x^8
const u8 XXX = 0x1B;
// Struct used to save quotient and remainder
struct quorem
{
u8 first; // quotient
u8 next; // remainder
quorem(u8 i, u8 j){ first = i ; next = j; }
};
class GF_eight
{
// addition
inline friend GF_eight operator+(const GF_eight& i, const GF_eight& j);
// subtraction
inline friend GF_eight operator-(const GF_eight& i, const GF_eight& j);
// multiplication
friend GF_eight operator*(const GF_eight& i, const GF_eight& j);
// division
friend GF_eight operator/(const GF_eight& i, const GF_eight& j);
public:
// Constructor
GF_eight(u8 V = 0)
{
this->Value = V;
}
GF_eight(const GF_eight& V)
{
this->Value = V.Value;
}
// return value
u8 getValue() const { return this->Value; }
// Set the Value
void setValue(u8 V) { this->Value = V;}
// Check if it is a generator of GF(2^8)
bool is_gen() const;
// Obtain the inverse element
GF_eight inverse() const;
//Obtain the g^n
GF_eight power(u8 n) const;
//Obtain the dlog based g
GF_eight log(const GF_eight& g) const;
private:
u8 Value;
};
inline GF_eight operator+(const GF_eight& i, const GF_eight& j)
{
return GF_eight(i.Value ^ j.Value);
}
inline GF_eight operator-(const GF_eight& i, const GF_eight& j)
{
return GF_eight(i.Value ^ j.Value);
}
GF_eight operator*(const GF_eight& i, const GF_eight& j)
{
u8 lowest_bit = 0x01;
u8 highest_bit = 0x80;
u8 temp_j = j.Value;
u8 temp_res = i.Value;
u8 res = 0;
u8 flag;
if ( temp_j & lowest_bit )
res = temp_res;
temp_j >>= 1;
while( temp_j != 0 )
{
flag = temp_res & highest_bit;
temp_res <<= 1;
// Plus 27 if b_8 == 1( flag == 1 )
if( flag )
temp_res ^= XXX;
/* test code
printf("%x\n",temp_res);
*/
if(temp_j & lowest_bit)
res ^= temp_res;
temp_j >>= 1;
}
return GF_eight(res);
}
GF_eight operator/(const GF_eight& i, const GF_eight& j)
{
GF_eight temp = j.inverse();
return i * temp;
}
////////////* Auxiliary functions for finding inverse*///////////////////
// Auxiliary function for poly_div
// Check if i's degree is equal to j's
static inline bool equal_degree(u8 i, u8 j)
{
return ((i ^ j) < i && (i ^ j) < j);
}
// Poly division in GF(2^n). n equals to 8 in this function
static quorem poly_div(u8 ii, u8 jj)
{
u8 shift = 0;
u8 temp = 1;
u8 res = 0;
// Trival Case
if( jj == 0 )
{
printf("Error divisor\n");
return quorem(0, 0);
}
if( ii == 0 )
return quorem(0, jj);
if( jj == 1 )
return quorem(ii, 0);
// When ii's degree is larger or equal to jj's degree
u8 temp_j = jj;
res = 0;
while( equal_degree(ii, jj) || ii > jj )
{
temp_j = jj;
// Right shift the divisor until the divisor's degree is equal to the dividend's
while(!equal_degree(ii, temp_j))
{
shift++;
temp_j <<= 1;
}
/* test code
printf("%x\n",temp_j);
*/
temp <<= shift;
ii ^= temp_j;
res ^= temp;
shift = 0;
temp = 1;
}
return quorem(res, ii);
}
/////////////////////////////////////////////////////////////////////////
// Finding inverse using EGCD
GF_eight GF_eight::inverse() const
{
// Deal with the trivial cases
if( this->Value == 0)
{
printf("Zero element doesn't have inverse!\n");
return GF_eight(0);
}
if( this->Value == 1)
return GF_eight(1);
// Using Extended Algorithm
u8 r1 = 0x8D;
u8 r2 = this->Value;
u8 r3 = 0;
u8 v1 = 1;
u8 v2 = 0;
u8 v3 = 0;
u8 w1 = 0;
u8 w2 = 1;
u8 w3 = 0;
u8 q = 0;
quorem p(0,0);
GF_eight temp(0);
// Because we use the byte to implement poly_div. So we must
// deal with the highest bit of the 0x11B before using EGCD.
// The division is actually the same as the usual division. I just do some operation explicitly( Because we are just allowed to implement in bytes.)
p = poly_div(r1, r2);
q = p.first;
r3 = p.next;
r3 <<= 1;
r3 ^= 1;
q <<= 1;
p = poly_div(r3, r2);
q ^= p.first;
r3 = p.next;
/* test code
printf("q:%x\n",q);
printf("r3:%x\n",r3);
printf("v:%x\n",v3);
printf("w:%x\n\n",w3);
getchar();
*/
r1 = r2;
r2 = r3;
v1 = 0;
v2 = 1;
w1 = 1;
w2 = q;
// Using EGCD
while(1)
{
//Obtain the quotient and remainder
p = poly_div(r1, r2);
q = p.first;
r3 = p.next;
if( r3 == 0 ) break;
// The multiplication must be token in GF(2^8)
temp = GF_eight(q) * GF_eight(v2);
v3 = v1 ^ (temp.getValue());
temp = GF_eight(q) * GF_eight(w2);
w3 = w1 ^ (temp.getValue());
/* test code
printf("q:%x\n",q);
printf("r1:%x\n",r1);
printf("r2:%x\n",r2);
printf("r3:%x\n",r3);
printf("v:%x\n",v3);
printf("w:%x\n\n",w3);
getchar();
*/
r1 = r2;
r2 = r3;
v1 = v2;
v2 = v3;
w1 = w2;
w2 = w3;
}
return GF_eight((u8)w2);
}
bool GF_eight::is_gen() const
{
GF_eight g(this->Value);
u8 cnt = 0;
while( g.Value != 1 )
{
g = g * (*this);
cnt = cnt + 1;
if ( cnt == 254)
return true;
}
return false;
}
GF_eight GF_eight::log(const GF_eight_pack::GF_eight &g) const
{
if( !g.is_gen() )
{
printf("The input is not a generator!\n");
return 0;
}
GF_eight temp(1);
GF_eight h(this->Value);
// Using the simple algorithm:Collision method to solve g^x = h
int N = 255;
int n = sqrt(N)+1;
// list for finding Collision
u8 list[256];
memset(list, 0, 256);
// Computing g^0,g^1,...,g^n and record the index i
u8 i = 0;
do{
list[temp.getValue()] = i;
temp = temp * g;
i++;
}while( i <= n );
temp = temp.inverse(); // temp = g^-(n+1)
temp = temp * g; // temp = g^-n
i = 0;
u8 j = 0;
do{
i = list[h.getValue()];
if( i != 0)
break;
list[h.getValue()] = j;
h = h * temp;
j++;
}while( j <= n );
return i + (j*n);
}
// Quick power
GF_eight GF_eight::power(u8 n) const
{
GF_eight res(1);
GF_eight a(this->Value);
while( n > 0)
{
if ( n & 1 )
res = res * a;
n >>= 1;
a = a * a;
}
return res;
}
#undef u8
}
#endif /* _GF_H_ */