@Chiang
2019-12-29T15:09:27.000000Z
字数 5786
阅读 500
socket
WebSocket是html5新增加的一种通信协议,目前流行的浏览器都支持这个协议
首先看一段简单的javascript代码,该代码调用了WebSockets的API:
var ws = new WebSocket(“ws://echo.websocket.org”);
ws.onopen = function(){ws.send(“Test!”); };
ws.onmessage = function(evt){console.log(evt.data);ws.close();};
ws.onclose = function(evt){console.log(“WebSocketClosed!”);};
ws.onerror = function(evt){console.log(“WebSocketError!”);};
这份代码总共只有5行,现在简单概述一下这5行代码的意义。
- 第一行代码是在申请一个WebSocket对象,参数是需要连接的服务器端的地址,同http协议使用http://开头一样,WebSocket协议的URL使用ws://开头,另外安全的WebSocket协议使用wss://开头。
- 第二行到第五行为WebSocket对象注册消息的处理函数,WebSocket对象一共支持四个消息 onopen, onmessage, onclose和onerror,当Browser和WebSocketServer连接成功后,会触发onopen消息;如果连接失败,发送、接收数据失败或者处理数据出现错误,browser会触发onerror消息;当Browser接收到WebSocketServer发送过来的数据时,就会触发onmessage消息,参数evt中包含server传输过来的数据;当Browser接收到WebSocketServer端发送的关闭连接请求时,就会触发onclose消息。我们可以看出所有的操作都是采用消息的方式触发的,这样就不会阻塞UI,使得UI有更快的响应时间,得到更好的用户体验。
Browser已经支持http协议,为什么还要开发一种新的WebSocket协议呢?我们知道http协议是一种单向的网络协议,在建立连接后,它只允许Browser/UA(UserAgent)向WebServer发出请求资源后,WebServer才能返回相应的数据。而WebServer不能主动的推送数据给Browser/UA,当初这么设计http协议也是有原因的,假设WebServer能主动的推送数据给Browser/UA,那Browser/UA就太容易受到攻击,一些广告商也会主动的把一些广告信息在不经意间强行的传输给客户端,这不能不说是一个灾难。那么单向的http协议给现在的网站或Web应用程序开发带来了哪些问题呢?
让我们来看一个案例,现在假设我们想开发一个基于Web的应用程序去获取当前Web服务器的实时数据,例如股票的实时行情,火车票的剩余票数等等,这就需要Browser/UA与WebServer端之间反复的进行http通信,Browser不断的发送Get请求,去获取当前的实时数据。下面介绍几种常见的方式:
这种方式就是通过Browser/UA定时的向Web服务器发送http的Get请求,服务器收到请求后,就把最新的数据发回给客户端(Browser/UA),Browser/UA得到数据后,就将其显示出来,然后再定期的重复这一过程。虽然这样可以满足需求,但是也仍然存在一些问题,例如在某段时间内Web服务器端没有更新的数据,但是Browser/UA仍然需要定时的发送Get请求过来询问,那么Web服务器就把以前的老数据再传送过来,Browser/UA把这些没有变化的数据再显示出来,这样显然既浪费了网络带宽,又浪费了CPU的利用率。如果说把Browser发送Get请求的周期调大一些,就可以缓解这一问题,但是如果在Web服务器端的数据更新很快时,这样又不能保证Web应用程序获取数据的实时性。
- 上面介绍了Polling遇到的问题,现在介绍一下LongPolling,它是对Polling的一种改进。
- Browser/UA发送Get请求到Web服务器,这时Web服务器可以做两件事情,第一,如果服务器端有新的数据需要传送,就立即把数据发回给Browser/UA,Browser/UA收到数据后,立即再发送Get请求给Web Server;第二,如果服务器端没有新的数据需要发送,这里与Polling方法不同的是,服务器不是立即发送回应给Browser/UA,而是把这个请求保持住,等待有新的数据到来时,再来响应这个请求;当然了,如果服务器的数据长期没有更新,一段时间后,这个Get请求就会超时,Browser/UA收到超时消息后,再立即发送一个新的Get请求给服务器。然后依次循环这个过程。
- 这种方式虽然在某种程度上减小了网络带宽和CPU利用率等问题,但是仍然存在缺陷,例如假设服务器端的数据更新速率较快,服务器在传送一个数据包给Browser后必须等待Browser的下一个Get请求到来,才能传递第二个更新的数据包给Browser,那么这样的话,Browser显示实时数据最快的时间为2×RTT(往返时间),另外在网络拥塞的情况下,这个应该是不能让用户接受的。另外,由于http数据包的头部数据量往往很大(通常有400多个字节),但是真正被服务器需要的数据却很少(有时只有10个字节左右),这样的数据包在网络上周期性的传输,难免对网络带宽是一种浪费。
- 通过上面的分析可知,要是在Browser能有一种新的网络协议,能支持客户端和服务器端的双向通信,而且协议的头部又不那么庞大就好了。WebSocket就是肩负这样一个使命登上舞台的。
WebSocket协议是一种双向通信协议,它建立在TCP之上,同http一样通过TCP来传输数据,但是它和http最大的不同有两点:
- WebSocket是一种双向通信协议,在建立连接后,WebSocket服务器和Browser/UA都能主动的向对方发送或接收数据,就像Socket一样,不同的是WebSocket是一种建立在Web基础上的一种简单模拟Socket的协议;
- WebSocket需要通过握手连接,类似于TCP它也需要客户端和服务器端进行握手连接,连接成功后才能相互通信。
下面是一个简单的建立握手的时序图:
这里简单说明一下WebSocket握手的过程。
当Web应用程序调用new WebSocket(url)接口时,Browser就开始了与地址为url的WebServer建立握手连接的过程。
- Browser与WebSocket服务器通过TCP三次握手建立连接,如果这个建立连接失败,那么后面的过程就不会执行,Web应用程序将收到错误消息通知。
- 在TCP建立连接成功后,Browser/UA通过http协议传送WebSocket支持的版本号,协议的字版本号,原始地址,主机地址等等一些列字段给服务器端。
例如:
GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key:dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat,superchat
Sec-WebSocket-Version: 13
- WebSocket服务器收到Browser/UA发送来的握手请求后,如果数据包数据和格式正确,客户端和服务器端的协议版本号匹配等等,就接受本次握手连接,并给出相应的数据回复,同样回复的数据包也是采用http协议传输。
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept:s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat
- Browser收到服务器回复的数据包后,如果数据包内容、格式都没有问题的话,就表示本次连接成功,触发onopen消息,此时Web开发者就可以在此时通过send接口想服务器发送数据。否则,握手连接失败,Web应用程序会收到onerror消息,并且能知道连接失败的原因。
WebSocket与http协议一样都是基于TCP的,所以他们都是可靠的协议,Web开发者调用的WebSocket的send函数在browser的实现中最终都是通过TCP的系统接口进行传输的。WebSocket和Http协议一样都属于应用层的协议,那么他们之间有没有什么关系呢?答案是肯定的,WebSocket在建立握手连接时,数据是通过http协议传输的,正如我们上一节所看到的“GET/chat HTTP/1.1”,这里面用到的只是http协议一些简单的字段。但是在建立连接之后,真正的数据传输阶段是不需要http协议参与的。
具体关系可以参考下图:
Websocket是应用层第七层上的一个应用层协议,它必须依赖 HTTP 协议进行一次握手 ,握手成功后,数据就直接从 TCP 通道传输,与 HTTP 无关了。即:websocket分为握手和数据传输阶段,即进行了HTTP握手 + 双工的TCP连接
客户端发送消息:
GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Version: 13
服务端返回消息:
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
这里值得注意的是Sec-WebSocket-Accept的计算方法:
base64(hsa1(sec-websocket-key + 258EAFA5-E914-47DA-95CA-C5AB0DC85B11))
如果这个Sec-WebSocket-Accept计算错误浏览器会提示:Sec-WebSocket-Accept dismatch
如果返回成功,Websocket就会回调onopen事件
Websocket的数据传输是frame形式传输的,比如会将一条消息分为几个frame,按照先后顺序传输出去。这样做会有几个好处:
- 大数据的传输可以分片传输,不用考虑到数据大小导致的长度标志位不足够的情况。
- 和http的chunk一样,可以边生成数据边传递消息,即提高传输效率。
websocket传输使用的协议如下图:
参数说明如下:
- FIN:1位,用来表明这是一个消息的最后的消息片断,当然第一个消息片断也可能是最后的一个消息片断;
- RSV1, RSV2, RSV3: 分别都是1位,如果双方之间没有约定自定义协议,那么这几位的值都必须为0,否则必须断掉WebSocket连接;
- Opcode: 4位操作码,定义有效负载数据,如果收到了一个未知的操作码,连接也必须断掉,以下是定义的操作码:
* %x0 表示连续消息片断
* %x1 表示文本消息片断
* %x2 表未二进制消息片断
* %x3-7 为将来的非控制消息片断保留的操作码
* %x8 表示连接关闭
* %x9 表示心跳检查的ping
* %xA 表示心跳检查的pong
* %xB-F 为将来的控制消息片断的保留操作码
- Mask: 1位,定义传输的数据是否有加掩码,如果设置为1,掩码键必须放在masking-key区域,客户端发送给服务端的所有消息,此位的值都是1;
- Payload length: 传输数据的长度,以字节的形式表示:7位、7+16位、或者7+64位。如果这个值以字节表示是0-125这个范围,那这个值就表示传输数据的长度;如果这个值是126,则随后的两个字节表示的是一个16进制无符号数,用来表示传输数据的长度;如果这个值是127,则随后的是8个字节表示的一个64位无符合数,这个数用来表示传输数据的长度。多字节长度的数量是以网络字节的顺序表示。负载数据的长度为扩展数据及应用数据之和,扩展数据的长度可能为0,因而此时负载数据的长度就为应用数据的长度。
- Masking-key: 0或4个字节,客户端发送给服务端的数据,都是通过内嵌的一个32位值作为掩码的;掩码键只有在掩码位设置为1的时候存在。
- Payload data: (x+y)位,负载数据为扩展数据及应用数据长度之和。
- Extension data: x位,如果客户端与服务端之间没有特殊约定,那么扩展数据的长度始终为0,任何的扩展都必须指定扩展数据的长度,或者长度的计算方式,以及在握手时如何确定正确的握手方式。如果存在扩展数据,则扩展数据就会包括在负载数据的长度之内。
- Application data: y位,任意的应用数据,放在扩展数据之后,应用数据的长度=负载数据的长度-扩展数据的长度。
参考资料:
websocket 实现原理
WebSocket(1)-- WebSocket API简介
WebSocket(2)--为什么引入WebSocket协议
WebSocket(3)-- WebSocket协议简介
WebSocket(4)-- WebSocket与TCP、Http的关系