@rrtcc
2016-11-13T16:12:31.000000Z
字数 1056
阅读 39
混沌现象
驱动力
Exercise3.18
Calculate Poincare section for the pendulum as it undergoes the period-doubling route to chaos. Plot ω versus θ, with one point plotted for each drive cycle, as in Figure 3.9. Do this for F_D =1.4, 1.44, 1.465, using the other parameters as given in connection with Figure 3.10. You should find that after removing the points corresponding to the initial transient the attractor in the period-1 regime will contain only a single point. Likewise, if the behavior is period n, the attractor will contain n discrete points.
首先,考虑增大驱动力,结果如下(代码)
如上,当驱动力不断增加时,系统由有序趋于混沌而后再次趋于有序,由图可知,第一张图的摆的周期与外界驱动力的相同,第二张图是外力周期两倍,第三张图是外力周期四倍,考虑利用教材所述的bifurcation diagrams做一个简单的分析(代码)
如图所示,F从1.35至1.42的这段区域内,每一个F只对应一个角度,这时单摆的周期与外力周期一致,而后每一个F对应两个,四个角度,此时单摆的周期为外力周期的两倍,四倍。当外力持续增大时,周期会更大,进而再一次进入混沌.
根据3.18所述,结果如下(代码)
在不同的角度观察了外力为1.4 1.44 1.465情况下的系统,得出了相应的周期关系,并简要分析了系统的状态变化