[关闭]
@cww97 2017-12-12T02:20:07.000000Z 字数 2999 阅读 928

机器学习作业9:k均值聚类

机器学习


k均值聚类,这次作业要求自动确定均值 = =

K均值聚类

K均值聚类(固定k)大致步骤:

  1. 随机选择k个点作为初始的簇中心
  2. 计算每个点到每个簇中心的距离,选择最小的作为该点属于的簇类
  3. 将每个簇的点取平均获得一个新的簇中心
  4. 重复2、3步骤直至簇中心不再变化
  5. 输出簇划分

伪代码表示(from书P203):

k-means

因为要确定k值,所以怕是没法直接sklearn了

自己实现的Kmeans,为了优雅,分了几个函数,fit先初始化然后产生一开始的类簇

随后的循环迭代两行便是上面口述步骤的二三步:得到新分类,每个类计算新中心,收敛时结束。其中计算新分类调用了get_dist()计算距离矩阵,

  1. class Kmeans:
  2. data = np.array([])
  3. n, k = 0, 0
  4. def init_center(self):
  5. center = [] # center of clusters
  6. while len(center) < k: # 产生k个不重复的随机数
  7. cen = random.randint(0, n - 1)
  8. if cen not in center:
  9. center.append(cen)
  10. for i in range(len(center)): # 到data里面取点
  11. center[i] = data[center[i]]
  12. return center
  13. def get_dist(self, center):
  14. dist = np.zeros((n, k))
  15. for j in range(n):
  16. for i in range(k):
  17. dist[j][i] = np.linalg.norm(center[i] - data[j])
  18. return dist
  19. def get_clusters(self, center):
  20. dist = self.get_dist(center)
  21. label = np.argmin(dist, 1)
  22. clusters = []
  23. for i in range(k): clusters.append([])
  24. for i in range(n):
  25. clusters[label[i]].append(data[i])
  26. return label, clusters
  27. def new_center(self, label, clusters):
  28. center = []
  29. for i in range(k):
  30. center.append(np.average(clusters[i], 0))
  31. return center
  32. def over(self, c0, c1):
  33. for i in range(k):
  34. print(c0[i]- c1[i])
  35. if np.linalg.norm(c0[i]-c1[i]) > eps: return False
  36. return True
  37. def fit(self, data, k):
  38. self.data, self.k, self.n = data, k, len(data)
  39. center0 = self.init_center()
  40. while True:
  41. label, clusters = self.get_clusters(center0)
  42. center1 = self.new_center(label, clusters)
  43. if self.over(center0, center1): break
  44. center0 = center1
  45. return label

关于数据

debug的时候用的样例数据

data = np.array([[-9.38526262,  2.74797643],
        [-11.8458768,  2.06863466],
        [-0.84464735, -3.6778601 ],
        [-9.55019081,  2.91500874],
        [-0.29088953, -4.58059872],
        [-0.90988716, -2.43335193],
        [-9.82206029,  2.66678343],
        [-0.28556052, -3.97549066],
        [-1.51725199, -2.53455834],
        [-10.6981788,  3.64205984]])
label = np.array([0, 0, 1, 0, 1, 1, 0, 1, 1, 0])

测试一下样例数据

  1. if __name__ == '__main__':
  2. n, k = 10, 2
  3. data, label = get_data(n, k)
  4. cls = Kmeans()
  5. fit_label = cls.fit(data=data, k=k)
  6. print(label)
  7. print(fit_label)

结果

[ 0.87505124 -0.06011619]
[ 0.  0.]
[ 0.  0.]
[0 0 1 0 1 1 0 1 1 0]
[0 0 1 0 1 1 0 1 1 0]

与原先设置的label一模一样,当然,迭代两轮就结束了

为了写代码和调试的方便,我在这里之前都使用了样例数据

  1. def get_data(n, k):
  2. # sample data, use in debug
  3. '''
  4. data = np.array([[-9.38526262, 2.74797643],
  5. [-11.8458768, 2.06863466],
  6. [-0.84464735, -3.6778601 ],
  7. [-9.55019081, 2.91500874],
  8. [-0.29088953, -4.58059872],
  9. [-0.90988716, -2.43335193],
  10. [-9.82206029, 2.66678343],
  11. [-0.28556052, -3.97549066],
  12. [-1.51725199, -2.53455834],
  13. [-10.6981788, 3.64205984]])
  14. label = np.array([0, 0, 1, 0, 1, 1, 0, 1, 1, 0])
  15. '''
  16. data, label = make_blobs(n_samples=n, n_features=2, centers=k)
  17. return data, label

加大数据

image.png-38.1kB

image.png-169.8kB

再大我有点担心机器性能了

试一下三维数据

image.png-135.3kB

很好,我大概成功造了一个车轮

自动确定k值

不会,抄彭先生的

这里参考了彭先生的方法,其实聚类的k值很大程度上看人的喜好(也就是分几类),我们,就穷举吧= =枚举我们需要的k,然后计算每次的类簇“半径”,取半径之和下降最快的k为我们要的k,在实际应用中,其实这就是个调参的过程

  1. def no_k_fit(self, data):
  2. central_dots, radius = [], np.zeros(self.__max_k, np.float32)
  3. # 寻找最佳的k值,k值范围在1到max_k之间
  4. for k in range(1, self.__max_k):
  5. _, distance_group, data_type = self.__fit_k_means(data, k)
  6. type_distance = np.min(distance_group, axis=0)
  7. central_dots.append(_)
  8. # 计算各个簇的半径(中心点到簇中最远的点的距离)之和
  9. for idx in range(k):
  10. type_data_idx = np.where(data_type == idx)
  11. radius[k] += np.max(type_distance[type_data_idx])
  12. # 加权求和,k用于抑制
  13. radius[k] = np.sqrt(radius[k]) * k
  14. # 交叉相减,得出半径之和下降最快的k值,并认定为最佳k值
  15. best_k = np.argmax(radius[:self.__max_k-1] - radius[1:])
  16. self.__dots = central_dots[best_k]
添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注