@ArrowLLL
2019-05-25T12:29:09.000000Z
字数 24525
阅读 2063
班级: 09061401
学号: 2014302358
姓名: 林维
若加法密码中密钥K=7,试求明文good night的密文。
const int alplen(26);
// ptx表示明文(plaintext), key表示密钥, ctx表示密文(ciphertext)
void additive_cipher(char *ptx, int key, char *ctx)
{
int i;
for(i = 0; ptx[i]; i++) {
if(ptx[i] > 'z' || ptx[i] < 'a') {
ctx[i] = ptx[i];
}
else {
int c = ((ptx[i] - 'a') + key) % alplen;
ctx[i] = 'a' + c;
}
}
ctx[i] = '\0';
}
解得密文为 : nvvk upnoa
若乘法密码中密钥K=5,试对明文network的加密。
const int alplen(26);
// ptx表示明文(plaintext), key表示密钥, ctx表示密文(ciphertext)
void multiplication_cipher(char *ptx, int key, char *ctx)
{
int i;
for(i = 0; ptx[i]; i++) {
if(ptx[i] < 'a' || ctx[i] > 'z') {
ctx[i] = ptx[i];
}
else {
int c = ptx[i] - 'a';
c = c * key % alplen;
ctx[i] = 'a' + c;
}
}
ctx[i] = '\0';
}
得到密文为 : nurgshy
已知仿射变换为c=5m+7(mod26),试对明文help me加密
const int alplen(26);
// ptx表示明文(plaintext), key1、key2表示密钥, ctx表示密文(ciphertext)
void affine_transformation(char *ptx, int key1, int key2, char *ctx)
{
int i;
for(i = 0; ptx[i]; i++) {
if(ptx[i] < 'a' || ptx[i] > 'z') {
ctx[i] = ptx[i];
}
else {
int c = ptx[i] - 'a';
c = (c * key1 + key2) % alplen;
ctx[i] = 'a' + c;
}
}
ctx[i] = '\0';
}
得到加密的密文为 : qbke pb
已知仿射变换为c=5m+7(mod26),试对密文VMWZ解密
const int alplen(26);
// ptx表示ctx表示密文(ciphertext), key1、key2表示密钥, 明文(plaintext)
void re_affine_trans(char *ctx, int key1, int key2, char *ptx)
{
int i, re_key1;
// 求key1在模alplen情况下的逆
for(re_key1 = 0; re_key1 < alplen; re_key1++) {
if(re_key1 * key1 % alplen == 1) {
break;
}
}
for(int i = 0; ctx[i]; i++) {
if(ctx[i] < 'A' || ctx[i] > 'Z') {
ptx[i] = ctx[i];
}
else {
int c = ctx[i] - 'A';
c = (c - key2) * re_key1;
c = (c % alplen + alplen) % alplen;
ptx[i] = 'A' + c;
}
}
ptx[i] = '\0';
}
得到解密的明文为 : IBDO
已知下列密文是通过单表代替密码加密的结果,试求其明文。
YIF QFMZRW QFYV ECFMD ZPCVMRZW NMD ZVEJB TXCDD UMJN DIFEFMDZ CD MQ ZKCEYFCJMYR NCW JCSZR EXCHZ UNMXZ NZ UCDRJ XYYSMRT M EYIFZW DYVZ VYFZ UMRZ CRW NZ DZJJXZW GCHS MR NMD HNCMF QCHZ JMXJZW IE JYUCFWD JNZ DIR.
这个过程是手算的,结果如下 :
our friend from paris examined his empty glass with surprise as if evaporation had taken place while he wasnt looging i poured some more wine and he settled back in his chair face tilted up towards the sun.
已知Vigenere密码的密钥为matrix,试对明文some simple cryptosystem加密
const int alplen(26);
//ptx表示明文(plaintext), key表示密钥, ctx表示密文(ciphertext)
void vignere(char *ptx, char *key, char *ctx)
{
int i, j;
for(i = 0, j = 0; ptx[i]; i++) {
if(ptx[i] < 'a' || ptx[i] > 'z') {
ctx[i] = ptx[i];
}
else {
int c = ptx[i] - 'a' + (key[j++] - 'a');
ctx[i] = 'a' + (c % 26);
if(!key[j]) j = 0;
}
}
ctx[i] = '\0';
}
得到加密的密文为 : eofv afypev kokpmfavetxd
若代数密码中密钥为best,试对明文good加密
const int alplen(26);
// ptx表示明文(plaintext), key1、key2表示密钥, ctx表示密文(ciphertext)
void algebraic_cipher(char *ptx, char *key, char *ctx)
{
int i, j;
for(i = 0, j = 0; ptx[i]; i++) {
if(ptx[i] > 'z' || ptx[i] < 'a') {
ctx[i] = ptx[i];
}
else {
int c = ptx[i] - 'a', k = key[j++] - 'a';
ctx[i] = 'a' + (c ^ k) % alplen;
if(!key[j]) j = 0;
}
}
ctx[i] = '\0';
}
得到加密的密文为 : hkcq
假设Hill密码加密使用密钥,试对明文best加密
const int alplen(26), maxn(100);
// ptx表示明文(plaintext), key[maxn][maxn]表示密钥, 密钥的秩为k, ctx表示密文(ciphertext)
// 这里假设矩阵的大小不超过100
void hill_cipher(char *ptx, int key[][maxn], int l, char *ctx)
{
int i = 0, c[maxn];
while(ptx[i]) {
for(int j = 0; j < l; j++) {
c[j] = ptx[i + j] - 'a';
}
for(int j = 0, t; j < l; j++) {
t = 0;
for(int k = 0; k < l; k++) {
t += key[j][k] * c[k];
}
ctx[j + i] = 'a' + t % 26;
}
i += l;
}
ctx[i] = '\0';
}
得到加密的密文 : ofjf
假设Hill密码加密使用密钥,试对密文UMFL解密。
const int alplen(26), maxn(100);
// ptx表示明文(plaintext), key[2][2]表示密钥, ctx表示密文(ciphertext)
void re_hill_cipher(char *ctx, int key[2][2], char *ptx)
{
int re_key[2][2] = {key[1][1], -key[0][1], -key[1][0], key[0][0]};
int detKey = key[0][0] * key[1][1] - key[0][1] * key[1][0], re_detKey;
for(int i = 0; i < 26; i++) {
if(detKey * i % alplen == 1) {
re_detKey = i;
break;
}
}
for(int i = 0; i < 2; i++) {
for(int j = 0; j < 2; j++) {
re_key[i][j] = re_key[i][j] * re_detKey % alplen;
re_key[i][j] = (re_key[i][j] + alplen) % alplen;
}
}
int i = 0, c[2];
while(ctx[i]) {
for(int j = 0; j < 2; j++) {
c[j] = ctx[j + i] - 'a';
}
for(int j = 0; j < 2; j++) {
int ans = 0;
for(int k = 0; k < 2; k++) {
ans += re_key[j][k] * c[k];
}
ptx[i + j] = 'a' + ans % alplen;
}
i += 2;
}
ptx[i] = '\0';
}
得到相应的明文 : GOOD
假设明文friday利用的Hill密码加密,得到密文PQCFKU,试求密钥K
void key_hill_cipher(char *ptx, char *ctx, int key[2][2])
{
int p[6], c[6], t = strlen(ptx);
for(int i = 0; i < t; i++) {
p[i] = ptx[i] - 'a', c[i] = ctx[i] - 'a';
}
for(int i = 0; i < alplen; i ++) {
for(int j = 0; j < alplen; j++) {
int sig;
for(sig = 0; sig < t; sig += 2) {
if((p[sig] * i + p[sig + 1] * j) % alplen != c[sig]) {
break;
}
}
if(sig < t) continue;
key[0][0] = i, key[0][1] = j;
for(int k = 0; k < alplen; k++) {
for(int l = 0; l < alplen; l++) {
for(sig = 0; sig < t; sig += 2) {
if((p[sig] * k + p[sig + 1] * l) % alplen != c[sig + 1])
break;
}
if(sig >= t) {
key[1][0] = k, key[1][1] = l;
return ;
}
}
}
}
}
}
解得密钥
设DES数据加密标准中:
明文
m = 0011 1000 1101 0101 1011 1000 0100 0010 1101 0101 0011 1001 1001 0101 1110 0111
密钥
K = 1010 1011 0011 0100 1000 0110 1001 0100 1101 1001 0111 0011 1010 0010 1101 0011
试求L1与R1。
#include <bits/stdc++.h>
using namespace std;
const int maxn(70);
void output(bool *t, int l)
{
for(int i = 1, d = 1; i <= l / 4; i++) {
for(int j = 0; j < 4; j++) {
cout<<t[d++];
}
cout<<' ';
}
cout<<endl;
cout<<"--------------"<<endl;
}
void ipTrans(bool m[maxn])
{
bool cm[maxn];
int s[] = {58, 60, 62, 64, 57, 59, 61, 63};
for(int i = 0, l = 1; i < 8; i++) {
for(int j = s[i]; j > 0; j -= 8) {
cm[l++] = m[j];
}
}
for(int i = 1; i <= 64; i++) {
m[i] = cm[i];
}
}
void PC_1(bool k[maxn])
{
bool ck[maxn];
int st[] = {57, 58, 59, 60, 63, 62, 61, 28};
int le[] = {8, 8, 8, 4, 8, 8, 8, 4};
for(int i = 0, l = 1; i < 7; i++) {
for(int j = 0; j < le[i]; j++) {
ck[l++] = k[st[i] - j * 8];
}
}
for(int i = 0; i <= 56; i++) {
k[i] = ck[i];
}
}
int cirMv[] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
void circle_left(bool k[maxn], int t)
{
t = cirMv[t];
bool C[maxn >> 1], D[maxn >> 1];
for(int i = 1; i <= 28; i ++) {
C[i] = k[i], D[i] = k[28 + i];
}
for(int j = 0; j < t; j++) {
for(int i = 0; i < 28; i++) {
C[i] = C[i + 1], D[i] = D[i + 1];
}
C[28] = C[0], D[28] = D[0];
}
for(int i = 1; i <= 28; i++) {
k[i] = C[i], k[28 + i] = D[i];
}
}
void PC_2(bool k[maxn], bool ck[maxn])
{
int transTable[] = {
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
};
for(int i = 0; i < 48; i++) {
ck[i + 1] = k[transTable[i]];
}
}
const int selectMatrix[8][4][16] = {
// S1
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
//S2
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
//S3
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
//S4
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
//S5
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
//S6
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
//S7
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
//S8
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11
};
void encrypt_f(bool R[maxn], bool k[maxn], bool fR[maxn])
{
bool ER[maxn], p[maxn];
int st[] = {0, 4, 8, 12, 16, 20, 24, 28};
for(int i = 0, l = 1; i < 8; i++) {
for(int j = 0; j < 6; j++) {
ER[l++] = R[st[i] + j];
}
}
ER[1] = R[32], ER[48] = R[1];
for(int i = 1; i <= 48; i++) {
ER[i] = ER[i] ^ k[i];
}
for(int i = 0, l = 1; i < 8; i++) {
int locbit[10], row, column;
for(int j = 1; j <= 6; j++) {
locbit[j] = ER[i * 6 + j];
}
row = (locbit[1] << 1) | locbit[6];
column = 0;
for(int j = 2; j <= 5; j++) {
column |= (int)locbit[j] << (5 - j);
}
int res = selectMatrix[i][row][column];
for(int i = 3; i >= 0; i--) {
p[l++] = (res & (1 << i)) ? 1 : 0;
}
}
int p_trans[] = {
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25
};
for(int i = 0; i < 32; i++) {
fR[i + 1] = p[p_trans[i]];
}
}
void re_ipTrans(bool m[maxn])
{
bool cm[maxn];
int st[] = {40, 8, 48, 16, 56, 24, 64, 32};
for(int i = 0, l = 1; i < 8; i++) {
for(int j = 0; j < 8; j++) {
cm[l++] = m[st[j] - i];
}
}
for(int i = 1; i <= 64; i++) {
m[i] = cm[i];
}
}
int main()
{
bool m[maxn], k[maxn], ck[maxn];
int n = 64;
char in[6];
freopen("data.in", "r", stdin);
for(int i = 0, l = 1; i < 16; i++) {
cin >> in;
for(int j = 0; j < 4; j++) {
m[l++] = in[j] - '0';
}
}
for(int i = 0, l = 1; i < 16; i++) {
cin >> in;
for(int j = 0; j < 4; j++) {
k[l++] = in[j] - '0';
}
}
// 初始置换IP
ipTrans(m);
bool L[maxn >> 1], R[maxn >> 1], cR[maxn >> 1];
for(int i = 1; i <= 32; i++) {
L[i] = m[i], R[i] = m[32 + i];
}
PC_1(k);
for(int i = 0; i < 16; i++) {
// 子密钥生成
circle_left(k, i);
PC_2(k, ck);
// 加密函数f
encrypt_f(R, ck, cR);
//获得新的L和R
for(int j = 1; j <= 32; j++) {
cR[j] ^= L[j];
}
for (int j = 1; j <= 32; j++) {
L[j] = R[j];
R[j] = cR[j];
}
if(i == 0) {
cout << "L = "; output(L, 32);
cout << "R = "; output(R, 32);
}
}
for(int i = 1; i <= n / 2; i++) {
m[i] = R[i], m[i + 32] = L[i];
}
re_ipTrans(m);
output(m, 64);
return 0;
}
求得
L = 1101 0110 1010 0101 0010 0101 1000 1000
R = 1010 0110 0001 0100 0011 1001 1100 0100
已知IDEA密码算中:
明文 m =
01011100 10001101 10101001 11011110
10101101 00110101 00010011 10010011
密钥 K =
00101001 10101100 11011000 11100111
10100101 01010011 10100010 01011001
00101000 01011001 11001010 11100111
10100010 00101010 11010101 00110101
求第一轮的输出与第二轮的输入。
得到第一轮的输出(first iteration's output) :
0111 1111 0111 1001
1001 1001 0101 1101
0110 0000 0110 0011
0010 0101 0001 0100
以及第二轮的输入(second iteration's input) :
m =
0111 1111 0111 1001
1001 1001 0101 1101
0110 0000 0110 0011
0010 0101 0001 0100
z(1 - 6) =
1010 0010 0010 1010
1101 0101 0011 0101
1100 1111 0100 1010
1010 0111 0100 0100
1011 0010 0101 0000
1011 0011 1001 0101
已知IDEA密码算中:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
// 快速幂乘
LL ksPower(LL a, LL n, LL p)
{
LL ans = 1;
while(n) {
if(n & 1) ans = ans * a % p;
a = a * a % p;
n >>= 1;
}
return ans;
}
// 费马小定理求乘法逆元
LL getReverse(LL a, LL p)
{
return ksPower(a, p - 2, p);
}
void output(LL d)
{
for(int i = 15; i >= 0; i--) {
if(d & (1 << i)) cout << '1';
else cout << '0';
}
cout << endl;
}
int main()
{
char z[20];
cin >> z;
LL d = 0, p = (1 << 16) + 1;
for(int i = 0; i < 16; i++) {
if(z[i] == '1') {
d |= 1LL << (15 - i);
}
}
cout << "addition reverse : ";
output(p - 1 - d);
cout << "multiplication reverse : ";
output(getReverse(d, p));
return 0;
}
求得 :
addition reverse : 0111101101100011
multiplication reverse : 1011000000110011
已知FEAL密码中
明文 m=
0011 1010 1101 0111 0010 1010 1100 0010
1101 0111 1011 1000 0101 1101 0100 1000
密钥 K=
1001 0010 1001 0010 1111 1000 0110 0001
1101 0101 0011 1000 0100 1000 1101 1110
求L0与R0。
#include <bits/stdc++.h>
using namespace std;
typedef unsigned char usch;
const int maxn(10);
void input(usch *s)
{
# define anlsget(g, sig) do{\
usch d = 0, x[5];\
cin >> x;\
for(int j = 0; j < 4; j++) {\
if(x[j] - '0') d |= 1 << (3 - j);\
}\
g |= (sig ? d << 4 : d);\
}while(false)
for(int i = 0; i < 8; i++) {
s[i] = 0;
anlsget(s[i], 1);
anlsget(s[i], 0);
}
}
void output(usch *s, int l)
{
for(int i = 0; i < l; i++) {
for(int j = 0; j < 8; j++) {
cout << ((s[i] & (1 << (7 - j))) ? 1 : 0);
if(((j + 1) & 3) == 0) cout << ' ';
}
}
cout << endl;
puts("----------------------");
}
usch S(usch x1, usch x2, int sigm)
{
usch w = (sigm + x1 + x2) % (1 << 8);
return (w << 2) | (w >> 6);
}
void f_K(usch *a, usch *b, usch *f)
{
usch h1 = a[1] ^ a[0];
usch h2 = a[3] ^ a[2];
f[1] = S(h1, h2 ^ b[0], 1);
f[2] = S(h2, f[1] ^ b[1], 0);
f[0] = S(a[0], f[1] ^ b[2], 0);
f[3] = S(a[3], f[2] ^ b[3], 1);
}
void product_sub_key(usch *key, usch K[][2])
{
usch A[4], B[4];
memcpy(A, key, 4);
memcpy(B, key + 4, 4);
usch D[4], cB[4];
for(int i = 0; i < 6; i++) {
memcpy(D, A, 4);
memcpy(A, B, 4);
for(int j = 0; j < 4; j++) {
cB[i] = B[i] ^ D[i];
}
f_K(D, cB, B);
memcpy(K[i * 2], B, 2);
memcpy(K[i * 2 + 1], B + 2, 2);
}
}
void encrypt_f(usch a[4], usch b[2], usch f[4])
{
usch g1 = a[1] ^ b[0] ^ a[0];
usch g2 = a[2] ^ b[1] ^ a[3];
f[1] = S(g1, g2, 1);
f[2] = S(g2, f[1], 0);
f[3] = S(a[3], f[1], 1);
f[0] = S(a[0], f[1], 0);
}
void initialize_calculate(usch plx[8], usch L[4], usch R[4], usch K[12][2])
{
memcpy(L, plx, 4);
memcpy(R, plx + 4, 4);
for(int i = 0; i < 2; i++) {
L[i] ^= K[4][i];
L[i + 2] ^= K[5][i];
R[i] ^= K[6][i];
R[i + 2] ^= K[7][i];
}
for(int i = 0; i < 4; i++) {
R[i] ^= L[i];
}
}
void iteration(usch L[4], usch R[4], int j, usch K[12][2])
{
usch f[4], cL[4];
memcpy(cL, L, 4);
memcpy(L, R, 4);
encrypt_f(R, K[j], f);
for(int i = 0; i < 4; i++) {
R[i] = cL[i] ^ f[i];
}
}
void tail_calculate(usch L[4], usch R[4], usch ctx[maxn], usch K[12][2])
{
for(int i = 0; i < 4; i++) {
R[i] ^= L[i];
}
for(int i = 0; i < 2; i++) {
R[i] = R[i] ^ K[8][i];
R[i + 2] = R[i + 2] ^ K[9][i];
L[i] = L[i] ^ K[10][i];
L[i + 2] = L[i + 2] ^ K[11][i];
}
for(int i = 0; i < 4; i++) {
ctx[i] = R[i];
ctx[i + 4] = L[i];
}
}
int main()
{
freopen("data.in", "r", stdin);
usch plaintext[maxn], key[maxn], ciphertext[maxn];
input(plaintext);
input(key);
usch sub_key[12][2], L[4], R[4];
product_sub_key(key, sub_key);
initialize_calculate(plaintext, L, R, sub_key);
cout << "L = "; output(L, 4);
cout << "R = "; output(R, 4);
for(int i = 0; i < 4; i++) {
iteration(L, R, i, sub_key);
}
tail_calculate(L, R, ciphertext, sub_key);
output(ciphertext, 8);
return 0;
}
求得 :
L = 1000 1000 0110 0000 1011 0100 0000 1100
R = 0000 1000 0000 0101 0111 0110 0000 1110
已知 a, b 分别为
a = 10000011 11010111 10100101 00110100
b = 00101011 10011010 00100101 11011100
为FEAL密码的子密钥产生函数,求
usch S(usch x1, usch x2, int sigm)
{
usch w = (sigm + x1 + x2) % (1 << 8);
return (w << 2) | (w >> 6);
}
void f_K(usch a[4], usch b[4], usch f[4])
{
usch h1 = a[1] ^ a[0];
usch h2 = a[3] ^ a[2];
f[1] = S(h1, h2 ^ b[0], 1);
f[2] = S(h2, f[1] ^ b[1], 0);
f[0] = S(a[0], f[1] ^ b[2], 0);
f[3] = S(a[3], f[2] ^ b[3], 1);
}
求得结果为 :
f = 01110010 00111100 11011100 11010100
已知
α = 00101011 11011101 10000001 01001000
β = 10011101 11100111
为FEAL密码的加密函数,求 。
usch S(usch x1, usch x2, int sigm)
{
usch w = (sigm + x1 + x2) % (1 << 8);
return (w << 2) | (w >> 6);
}
void encrypt_f(usch a[4], usch b[2], usch f[4])
{
usch g1 = a[1] ^ b[0] ^ a[0];
usch g2 = a[2] ^ b[1] ^ a[3];
f[1] = S(g1, g2, 1);
f[2] = S(g2, f[1], 0);
f[3] = S(a[3], f[1], 1);
f[0] = S(a[0], f[1], 0);
}
求得 :
f = 01010110 01101010 01100010 11001110
用欧几里得算法求 的逆元。
#include <bits/stdc++.h>
using namespace std;
void exgcd(int a, int b, int &x, int &y)
{
if(!b) {
x = 1, y = 0;
return ;
}
exgcd(b, a % b, y, x);
y -= x * (a / b);
}
int main()
{
int a, b, x, y;
cin >> a >> b;
exgcd(a, b, x, y);
cout << x << endl;
}
求得逆元为 : 16
求解下列线性同余式
#include <bits/stdc++.h>
using namespace std;
void exgcd(int a, int b, int &d, int &x, int &y)
{
if(!b) {
d = a, x = 1, y = 0;
return ;
}
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
int main()
{
int a, b, c, x, y, d;
// ax = c (mod b)
cin >> a >> c >> b;
exgcd(a, b, d, x, y);
if(c % d != 0) {
cout <<"no solution";
}
else {
x = (x * (c / d)) % b;
cout << (x + b) % b;
}
cout << endl;
return 0;
}
求得上两式的解分别为 : 16 和 147
求解下列同余方程组
#include <bits/stdc++.h>
using namespace std;
// 拓展欧几里得
int exgcd(int a, int b, int &x, int &y)
{
if(!b) {
x = 1, y = 0;
return a;
}
int d = exgcd(b, a % b, y, x);
y -= x * (a / b);
return d;
}
// 中国剩余定理
int china(int *b, int *w, int k)
{
int i, d, x, y, m, a = 0, n = 1;
for(i = 0; i < k; i++) {
n *= w[i];
}
for(i = 0; i < k; i++) {
m = n / w[i];
d = exgcd(w[i], m, x, y);
a = (a + y * m * b[i]) % n;
}
if(a > 0) return a;
else return a + n;
}
int main()
{
const int maxn(5);
int a[maxn], b[maxn], n;
cin >> n;
for(int i = 0; i < n; i++) {
cin >> a[i] >> b[i];
}
cout << china(a, b, n) << endl;
return 0;
}
求得两个方程组的解分别为 : 71 和 430
求
// a^n % mod = ans
int quickPower(int a, int n, int mod)
{
int ans = 1;
while(n) {
if(n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
n >>= 1;
}
return ans;
}
求得结果为 : 33
已知RSA密码体制的公开钥为 ,试对明文best wisheas加密。
#include <bits/stdc++.h>
using namespace std;
// 快速幂乘
int quicksPower(int a, int n, int mod)
{
int ans = 1;
while(n) {
if(n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
n >>= 1;
}
return ans;
}
// 加密函数
int encrypt(char a[2], int e, int n)
{
int d = a[0] - 'a';
if(a[1] >= 'a' && a[1] <= 'z') {
d = d * 100 + a[1] - 'a';
}
return quicksPower(d, e, n);
}
int main()
{
freopen("data.in", "r", stdin);
const int maxn(20);
char plaintext[maxn];
gets(plaintext);
for(int i = 0, j = 0; plaintext[i]; i++) {
if(plaintext[i] >= 'a' && plaintext[i] <= 'z') {
plaintext[j++] = plaintext[i];
}
}
int e, n;
scanf("%d%d", &n, &e);
for(int i = 0; plaintext[i]; i += 2) {
int ciphertext = encrypt(plaintext + i, e, n);
printf("%04d ", ciphertext);
}
puts("");
return 0;
}
求得相应的密文为 : 0975 1694 0009 2796 0255
已知背包公钥系统的超递增序列为 ,乘数 ,模数 ,试对明文 good night 进行加密。
#include <bits/stdc++.h>
using namespace std;
// 获得b序列
void get_bs(int *a, int *b, int n, int w, int m)
{
for(int i = 0; i < n; i++) {
b[i] = a[i] * w % m;
}
}
// 进行单个字符的加密
int encrypt(int *b, char c, int n)
{
int d = c - 'a', ciphertext = 0;
for(int i = 0; i < n; i++) {
int j = 1 << (n - i - 1);
if(d & j) {
ciphertext += b[i];
}
}
return ciphertext;
}
int main()
{
freopen("data.in", "r", stdin);
const int maxn(20);
int a[maxn], b[maxn], w, m, n;
char plaintext[maxn];
gets(plaintext);
scanf("%d", &n);
for(int i = 0; i < n; i++) {
scanf("%d", a + i);
}
scanf("%d%d", &w, &m);
get_bs(a, b, n, w, m);
for(int i = 0; plaintext[i]; i++) {
if(plaintext[i] < 'a' || plaintext[i] > 'z') {
continue;
}
printf("%d ", encrypt(b, plaintext[i], n));
}
puts("");
return 0;
}
求得密文为 : 56 59 59 39 36 3 56 64 96
已知背包公钥系统的超递增序列为 ,乘数 ,模数 ,试对密文 进行解密。
#include <bits/stdc++.h>
using namespace std;
const int maxn(10);
int femat(int w, int n)
{
int m = n - 2, ans = 1;
while(m) {
if(m & 1) ans = ans * w % n;
w = w * w % n;
m >>= 1;
}
return ans;
}
int decode(int rw, int c, int *a, int m, int n)
{
int d = rw * c % m, ans = 0;
for(int i = n - 1; i >= 0; i--) {
if(d >= a[i]) {
ans += (1 << (n - 1 - i));
d -= a[i];
}
}
return ans;
}
int main()
{
int n, a[maxn], w, m;
int ciphertext[maxn];
freopen("data.in", "r", stdin);
scanf("%d", &n);
for(int i = 0; i < n; i++) {
scanf("%d", a + i);
}
scanf("%d%d", &w, &m);
int j = 0;
while(~scanf("%d", ciphertext + j)) {
j++;
}
int rw = femat(w, m);
for(int i = 0; i < j; i++) {
char plaintext = 'a' + decode(rw, ciphertext[i], a, m, n);
cout << plaintext;
}
puts("");
return 0;
}
解得明文为 : besb
设明文空间共含有5个信息 ,并且
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from math import log
Pm = [1/4, 1/4, 1/8, 3/16, 3/16]
Hm = sum(map(lambda x : -x * log(x, 2), Pm))
print (Hm)
得到结果为 : 2.2806390622295662
考虑一个密码体制 , 和 。假设加密矩阵为
a | b | c | |
---|---|---|---|
2 | 3 | 4 | |
3 | 4 | 1 | |
1 | 2 | 3 |
已知密钥概率分布
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from math import log
def entropy(p) :
return -p * log(p, 2)
'''
Pk = [1/4, 1/4, 1/2]
Pm = [1/3, 1/4, 5/12]
epMatrix = [[2, 3, 4], [3, 4, 1], [1, 2, 3]]
'''
Pk = [1/2, 1/4,1/4]
Pm = [1/4, 3/4]
epMatrix = [[1, 2], [2, 3], [3, 4]]
Hm = sum(map(entropy, Pm))
print ("H(M) =", Hm)
Hk = sum(map(entropy, Pk))
print ("H(K) =", Hk)
cTomk, objNum = {}, 0
for k, row in enumerate(epMatrix) :
for m, code in enumerate(row) :
if code not in cTomk :
cTomk[code] = []
cTomk[code].append((k, m, Pk[k] * Pm[m]))
objNum += 1
Pc = [sum(map(lambda x: x[2], cTomk[cmk])) for cmk in cTomk]
Hc = sum(map(entropy, Pc))
print ("H(C) =", Hc)
Hmc, Hkc = 0, 0
for (p, cmk) in zip(Pc, cTomk) :
Pmc, Pkc = {}, {}
for (k, m, pkm) in cTomk[cmk] :
Pmc[m] = Pmc.setdefault(m, 0) + pkm
Pkc[k] = Pkc.setdefault(k, 0) + pkm
for m in Pmc :
Hmc += p * entropy(Pmc[m] / p)
for k in Pkc :
Hkc += p * entropy(Pkc[k] / p)
print ("H(M/C) =", Hmc)
print ("H(K/C) =", Hkc)
print ("H(K/C) = H(M) + H(K) - H(C) =", Hk + Hm - Hc)
求得 :
H(M) = 1.5545851693377997
H(K) = 1.5
H(C) = 1.9430486343469147
H(M/C) = 1.1115365349908848
H(K/C) = 1.1115365349908848
H(K/C) = H(M) + H(K) - H(C) = 1.111536534990885
证明:
已知概率关系
和
之间存在映射关系
映射关系证明如下 :
对于任意的 都有
由上,可以有推导过程 :
因此任意 均可通过上述推导过程由条件得到
即两式之间存在映射
且现已知
由映射关系可得
证明一个密码体制完全保密的充要条件为
必要性证明 :
由定理6.5,密码体制完全保密的充要条件是
由概率乘法定理,
则可得
因此,
必要性 得证
充分性证明
又有
由上述两式综合可得
因此
由概率乘法定理 可得到:
由定理6.3可知当 时, 该密码体制是完全保密的
充分性得证
3级线性反馈移位寄存器 时可有4种线性反馈函数,设初态为 , 求各线性反馈函数的输出序列和周期。
#include <bits/stdc++.h>
using namespace std;
int f(int *a, int *c, int n)
{
int g = a[0];
a[n] = 0;
for(int i = 0; i < n; i++) {
a[n] ^= a[i] * c[n - 1 - i];
}
for(int i = 0; i < n; i++) {
a[i] = a[i + 1];
}
return g;
}
bool cmp(int *a, int *b, int n)
{
for(int i = 0; i < n; i++) {
if(a[i] != b[i]) return false;
}
return true;
}
int main()
{
int a[5] = {1, 0, 1, 0, 0};
int c[5] = {0, 0, 1, 0, 0};
int fa[5], t;
memcpy(fa, a, sizeof a);
for(int &i = c[0]; i < 2; i++) {
c[1] = 0;
for(int &j = c[1]; j < 2; j++) {
cout <<"c1 = " << i << ", c2 = " << j << " : " <<endl;
cout << "output sequence : ";
t = 0;
do {
cout << f(a, c, 3);
t++;
}while(!cmp(a, fa, 3));
cout << endl;
cout << "period = " << t << endl << endl;
}
}
return 0;
}
由上述程序可得结果 :
c1 = 0, c2 = 0 :
output sequence : 101
period = 3c1 = 0, c2 = 1 :
output sequence : 1011100
period = 7c1 = 1, c2 = 0 :
output sequence : 1010011
period = 7c1 = 1, c2 = 1 :
output sequence : 10
period = 2
4级线性反馈移位寄存器在 , 可有8种线性反馈函数,设初态为,确定这些线性反馈函数中哪一个将给出周期为 的密钥流。
#include <bits/stdc++.h>
using namespace std;
int f(int *a, int *c, int n)
{
int g = a[0];
a[n] = 0;
for(int i = 0; i < n; i++) {
a[n] ^= a[i] * c[n - 1 - i];
}
for(int i = 0; i < n; i++) {
a[i] = a[i + 1];
}
return g;
}
bool cmp(int *a, int *b, int n)
{
for(int i = 0; i < n; i++) {
if(a[i] != b[i]) return false;
}
return true;
}
void output(int *a, int n)
{
while(n--) {
cout << a[n];
}
cout << endl;
}
int main()
{
int a[] = {1, 1, 0, 1, 0};
int c[] = {0, 0, 0, 1, 0};
int fa[5], t;
memcpy(fa, a, sizeof a);
for(int &i = c[0]; i < 2; i++) {
c[1] = 0;
for(int &j = c[1]; j < 2; j++) {
c[2] = 0;
for(int &k = c[2]; k < 2; k++) {
int t = (1 << 4) - 1;
do{
f(a, c, 4);
t--;
}while(!cmp(a, fa, 4));
if(!t) {
cout << "c = ";
output(c, 4);
}
}
}
}
return 0;
}
求得两解 :
c = 1100
c = 1001
[3] 假设破译者得到密文串 和相应的明文串 。假定攻击者也知道密钥流是使用3级线性移位寄存器产生的,试破译该密码系统。
#include <bits/stdc++.h>
using namespace std;
int f(int *a, int *c, int n)
{
int g = a[0];
a[n] = 0;
for(int i = 0; i < n; i++) {
a[n] ^= a[i] * c[n - 1 - i];
}
for(int i = 0; i < n; i++) {
a[i] = a[i + 1];
}
return g;
}
void output(int *a, int n)
{
while(n--) {
cout << a[n];
}
cout << endl;
}
void putIntoArray(int *a, int d, int n)
{
for(int i = 0; i < 3; i++) {
a[i] = (d >> i & 1);
}
}
int main()
{
char plx[20], ctx[20];
int a[5] = {0}, c[5] = {0}, fa[5], key[20], l;
//输入 plx = '0100010001', ctx = '1010110110'
cin >> plx >> ctx;
l = strlen(plx);
for(int i = 0; i < l; i++) {
key[i] = (plx[i] - '0') ^ (ctx[i] - '0');
}
for(int i = 0; i < (1 << 3); i++) {
for(int j = 0; j < (1 << 3); j++) {
putIntoArray(c, j, 3);
putIntoArray(a, i, 3);
int k = 0;
for(k = 0; k < l; k++) {
if(key[k] != f(a, c, 3)) break;
}
if(k >= l) {
cout << "a = "; output(a, 3);
cout << "c = "; output(c, 3);
return 0;
}
}
}
puts("no solution");
return 0;
}
解得 :
a = 010
c = 101
设 初态为 ,试求此非线性移位寄存器的输出序列及周期。
#include <bits/stdc++.h>
using namespace std;
int f(int *a)
{
int g = a[1];
a[5] = a[1] ^ a[4] ^ 1 ^ (a[2] * a[3]);
for(int i = 1; i <= 4; i++) {
a[i] = a[i + 1];
}
return g;
}
bool cmp(int *a, int *b)
{
for(int i = 1; i <= 4; i++) {
if(a[i] != b[i]) return false;
}
return true;
}
int main()
{
int a[] = {0, 1, 1, 0, 1, 0}, fa[6];
int t = 0;
memcpy(fa, a, sizeof a);
cout << "sequence = ";
do {
cout << f(a);
t ++;
}while(!cmp(a, fa));
cout << endl;
cout <<"period = " << t << endl;
return 0;
}
解得 :
sequence = 11011
period = 5
[5] 设J-K触发器中 是3级m序列, 是4级m序列,且
#include <bits/stdc++.h>
using namespace std;
const int maxn(50);
int input(int *d)
{
char cd[maxn];
cin >> cd;
int ld = strlen(cd);
for(int i = 1, j, k; i < ld; i++) {
if(ld % i != 0) continue;
for(j = 0, k; j < i; j++) {
for(k = j; k < ld; k += i) {
if(cd[k] != cd[j]) break;
}
if(k < ld) break;
}
if(j >= i) {
ld = i;
break;
}
}
for(int i = 0; i < ld; i++) {
d[i] = cd[i] - '0';
}
return ld;
}
int main()
{
freopen("data.in", "r", stdin);
int a[maxn], am, b[maxn], bn, u = 0;
am = input(a);
bn = input(b);
for(int i = 0; i < bn; i++) {
b[i] = 1 - b[i];
}
int j = 0, fu = a[0] == b[0] ? -1 : 1;
do {
u = u ? b[j % bn] : a[j % am];
j++;
cout << u;
if(j % 15 == 0) cout <<endl;
}while(j % am != 0 || j % bn != 0);
cout << endl;
cout << "period = " << j << endl;
return 0;
}
得到结果为 :
110010010101111
110100101100011
110001100100111
110010101101111
110101100010111
110100100101111
110101101100111period = 105
[6] 设二元域GF(2)上的一个线性移位寄存器的联系多项式为,初始状态为 ,试求其输出序列及其周期。
#include <bits/stdc++.h>
using namespace std;
const int maxn(20);
int input(int *a)
{
char s[maxn];
cin >> s;
int i;
for(i = 0; s[i]; i++) {
a[i] = s[i] - '0';
}
return i;
}
int f(int *a, int *c, int n)
{
int g = a[0];
a[n] = 0;
for(int i = 0; i < n; i++) {
a[n] += a[i] * c[i];
}
a[n] &= 1;
for(int i = 0; i < n; i++) {
a[i] = a[i + 1];
}
return g;
}
bool cmp(int *a, int *fa, int n)
{
for(int i = 0; i < n; i++) {
if(a[i] != fa[i]) return false;
}
return true;
}
int main()
{
int n;
int c[maxn], a[maxn], fa[maxn];
cin >> n;
input(c);
input(a);
memcpy(fa, a, sizeof a);
int t = 0;
do {
cout << f(a, c, n);
t++;
}while(!cmp(a, fa, n));
cout << endl;
cout << "period = " << t << endl;
return 0;
}
求得 :
1101000
period = 7
设二元域GF(2)上的一个线性移位寄存器的联系多项式为 ,初始状态为 ,试求其输出序列及其周期.
由[6]的程序可求得 :
0110111110100010010101100001110
period = 31
在DSS数字签名标准中,取 , 是 的一个本原元,于是 ,若取 ,则 ,假设想签名一个消息 ,且选择 ,计算明文 的签名,然后验证。
#include <bits/stdc++.h>
using namespace std;
int quickPower(int a, int n, int mod)
{
int ans = 1;
while(n) {
if(n & 1) ans = ans * a % mod;
a = a * a % mod;
n >>= 1;
}
return ans;
}
//83 41 23 4 56 57 77
int main()
{
int p, q, k, g, x, m, y;
cout <<"input p, q, k, g, m, x, y :" << endl;
cin >> p >> q >> k >> g >> m >> x >> y;
int r = quickPower(g, k, p) % q;
cout << "r = " << r << endl;
int rk;
for(rk = 1; rk < q; rk++) {
if(rk * k % q == 1) break;
}
int s = (rk * (m + x * r)) % q;
cout << "s = " << s << endl;
cout <<"------------" << endl;
int rs = 0;
while(rs * s % q != 1) rs++;
int w = rs % q;
cout << "w = " << w << endl;
int u1 = (m * w) % q;
cout << "u1 = " << u1 << endl;
int u2 = (r * w) % q;
cout << "u2 = " << u2 << endl;
int v = quickPower(g, u1, p) * quickPower(y, u2, p) % p % q;
cout << "v = " << v << endl;
return 0;
}
由上述程序可得 :
得到密文
验证 :
得到 : v = r, 验证成功
假设用户A使用了 和 的DSS数字签名标准,利用随机值 确定关于消息 的用户A签名,且说明产生签名是怎样验证的.
A签名, 由[1]给出的程序计算出 :
然后将 发送给B
B验证, 由[1]给出的程序 :
最后计算出
与r相等, 验证成功,是A的数字签名