[关闭]
@EggGump 2019-03-27T09:17:47.000000Z 字数 6782 阅读 748

A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges

sdn survey

Xie J , Yu F R , Huang T , et al. A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges[J]. IEEE Communications Surveys & Tutorials, 2018, PP(99):1-1.

机器学习算法综述

监督学习

无监督学习

半监督学习

强化学习

SDN中的机器学习

流量分类

大象流感知流量分类通常应用于数据中心。数据中心的一个主要目标是快速安排流量。细粒度流量分类方法(即,应用感知和QoS感知流量分类)可能会增加流量处理延迟,因此它们不适合数据中心。

应用程序感知流量分类通常应用于细粒度网络管理。但是,随着Internet上应用程序的指数增长,识别所有应用程序是不切实际的。现有研究通常识别最流行的应用程序。(如识别广泛使用的八种应用、Google Play上的前40个应用程序等)。

网络运营商可以使用QoS感知流量分类来根据其期望的QoS对网络资源分配进行优化。

路由优化

QoS服务质量/QoE体验质量预测

[163]采用神经网络模型估计给定流量负载的网络延迟和覆盖路由策略,实验结果表明基于神经网络的估计器在延迟估计的精度方面比传统的M/ M/1模型具有更好的性能。
[164]在SDN中提出了一种两阶段分析机制来改进QoS预测。首先,决策树用于发现KPI和QoS参数之间的相关性。然后,应用线性回归ML算法(即M5Rules)来执行根本原因分析并发现每个KPI的定量影响。
[165]使用两种学习方法(随机森林和回归树)估计Videoon-Demand(VoD)应用的两个QoS度量(帧速率和响应时间),应用感知QoS估计精度超过90%。由于随机森林是一种考虑许多决策树结果的集合方法,随机森林的预测精度高于回归树。然而,回归树的复杂性低于随机森林。

资源管理

安全

粗粒度入侵检测: 粗粒度入侵检测旨在将流量分类为正常和异常类。

[200]提出了一种威胁感知系统,用于对SDN中的网络入侵进行检测和响应,其中应用了决策树和随机森林算法来检测恶意活动。在选择特征集时用到了前向特征选择策略。
[201]应用HMM来预测恶意活动并增强网络安全性。HMM使用五个选定的流特征(即,分组的长度,源端口,目的地端口,源IP地址和目的地IP地址)来确定一组分组的恶意性。
[202]提出了一个名为ATLANTIC的框架,用于在SDN中联合执行异常流量检测,分类和缓解。分为两个阶段:轻量级阶段使用信息理论来计算流表熵的偏差。重量级阶段利用SVM算法对异常流量进行分类。
[204]利用四种ML算法(即决策树,BayesNet,决策表和朴素贝叶斯)来预测潜在的恶意连接和易受攻击的主机。 SDN控制器使用预测结果来定义安全规则,以便保护潜在的易受攻击的主机,并通过阻止整个子网来限制潜在攻击者的访问。结果表明,BayesNet具有比其他三种算法更好的性能,BayesNet实现的平均预测精度为91.68%。
[205]通过将流量分类为正常类和异常类,在SDN中使用深度神经网络模型来检测入侵活动。基于NSL-KDD数据集训练具有输入层、三个隐藏层和输出层的深度神经网络模型。实验结果表明,深度神经网络模型在异常检测中具有良好的性能,仅使用6个基本流特征时,平均检测精度为75.75%。

细粒度入侵检测: 细粒度入侵检测旨在对网络流量进行细粒度分类,并识别不同类型的攻击。

[208]提出了一种改进的基于行为的SVM来对网络攻击进行分类。为了提高入侵检测的准确性并加快正常和侵入模式的学习,决策树被用作特征缩减方法,以超越原始特征并选择最合格的特征。这些选定的特征是用于训练SVM分类器的输入数据。
[209]提出了一种基于深度学习的入侵检测方法NDAE。为了在保持高检测精度的同时加速入侵检测,NDAE结合了深度学习方法和随机森林,其中深度学习方法应用于特征减少,随机森林用于流量分类和入侵检测。

DDoS攻击检测: DDoS攻击是SDN中网络安全的主要威胁。 DDoS攻击的目标是通过使用许多木偶机器同时发送大量虚假请求来耗尽系统资源,以便不处理合法用户的请求。在SDN中,DDoS攻击可以耗尽数据平面和控制平面中的网络,存储和计算资源,这将使SDN网络不可用。

[210]应用自组织映射SOM根据收集的流量特征执行DDoS攻击检测。
[211]提出的IDS包含两个模块:签名IDS和高级IDS。签名IDS模块利用不同的ML算法,例如k-NN,Naive Bayes,k-means和k-medoids,将流量流分类为正常和异常,并找到一组具有异常行为的主机。然后,高级IDS模块将检查具有异常行为的这些主机发送的数据包,以检测主机是否异常或授权用户。这样,高级IDS模块的处理时间减少了,因为只需要分析具有异常行为的主机。
[98]应用深度学习模型检测SDN中的DDoS攻击,其中包括循环神经网络以及卷积神经网络。在收集和分析网络流量特征信息后,深度学习模型用于特征减少和DDoS攻击检测。
-[212]从收集的网络流量中提取68个流特征,包括来自TCP流的34个特征,来自UDP流的20个特征,以及来自ICMP流的14个特征。然后使用深度学习模型来进行特征减少和DDoS攻击检测。

其他

[213]提出了两个应用程序故障的概念验证示例,应用ML方法检测应用程序故障。检测结果可以指导SDN控制器实时采取适当的网络响应。
[214]专注于软件定义的防火墙,提出一个框架来快速匹配流程并有效地捕获用户行为。使用隐马尔科夫模型HMM捕获用户行为的状态信息,并识别网络连接是否合法。如果发现非法连接,防火墙可以及时阻止该连接的访问。然后,利用这些信息以及相应的分组字段来训练神经网络模型。经过训练的模型能够快速匹配流,而不是将数据包流与每个防火墙过滤规则进行比较。

挑战和未来研究方向

添加新批注
在作者公开此批注前,只有你和作者可见。
回复批注