@zero1036
2017-03-14T09:11:45.000000Z
字数 6055
阅读 4578
Java-Base 数据结构与算法
TimSort原理:现实数据通常会有部分是已经排好序,TimSort正是利用这一点,将数组拆成多个部分已排序的分区,部分未排序分区重新排序,最后将多个分区合并并排序。
例如:array[] = [24,63,70,55,41,92,81,80],排序步骤如下:
1. 拆分分区:[24,63], [70,55], [41,92], [81,80]
2. 重排分区:[24,63], [55,70], [41,92], [80,81]
3. 合并分区:[24,63,55,70], [41,92,80,81]
4. 重排分区:[24,55,63,70], [41,80,81,92]
5. 合并分区:[24,55,63,70,41,80,81,92]
6. 重排:[24,41,55,63,70,80,81,92]
JDK1.8以后默认采用Timsort排序,实现如下:
List list = new ArrayList<Integer>();...Collections.sort(list, new Comparator<Integer>() {public int compare(Integer o1, Integer o2) {if (o2 > o1) {return 1;} else {return -1;}}});
Java对于Timsort的实现与上述原理有区别。Java版首先会根据数组长度,采用Binarysort(折半插入排序法)对长度小于32(MIN_MERGE)直接进行排序返回结果;However,对于长度大于等于32的数组,先分区,再对单个分区进行采用Binarysort排序,最后合并分区并排序。
要点1:分区方法
假定数据长度为n,
If n < MIN_MERGE(32),返回n
Else if n 是2的倍数,返回MIN_MERGE(32) / 2 = 16
Else 返回整数k,k取值范围MIN_MERGE(32) / 2 = 16 <= k <= MIN_MERGE(32)
例:
Array Length = 15 ; minRun = 15
Array Length = 50 ; minRun = 25
Array Length = 500 ; minRun = 32
要点2:分区排序方法:二分法插入排序:
1、 二分法插入排序Binarysort要求首先找出数组(此数组即分区)中从0位开始连续升序区块,及区块下一位元素pivot;
例:
[1,3,5,7,9,4,8]的起始连续升序区块是[1,3,5,7,9],区块长度为5,即runLen;pivot是4;
2、 通过二分法比较pivot与区分元素的升降序关系,计算pivot在区块中的位置;并插入到该位置,组成新的区块;
例:
4在区块中[1,3,5,7,9],先比较5 > 4,是降序;再比较3 < 4,是升序,确认位置,通过native方法System.arraycopy()插入到区块中;
3、 再计算新区块与新pivot的位置关系,直到完成排序。
4、 注意:以上升序的定义是Comparator.compare(右元素, 左元素) >= 0,反之为降序;非数值上的升降序。
static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,T[] work, int workBase, int workLen) {assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;int nRemaining = hi - lo;if (nRemaining < 2)return; // 长度为0或1数组无需排序// 数组长度小于32时,直接采用binarySort排序,无需合并if (nRemaining < MIN_MERGE) {int initRunLen = countRunAndMakeAscending(a, lo, hi, c);binarySort(a, lo, hi, lo + initRunLen, c);return;}TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);// 获取分区长度int minRun = minRunLength(nRemaining);do {// 计算目标数组指定范围中,连续升序或连续降序的元素组run(最少3个元素),并返回run长度int runLen = countRunAndMakeAscending(a, lo, hi, c);// 若分区中连续升降序的元素组长度 等于 分区长度,则无需排序;反之binarySort重排if (runLen < minRun) {int force = nRemaining <= minRun ? nRemaining : minRun;binarySort(a, lo, lo + force, lo + runLen, c);runLen = force;}// Push run onto pending-run stack, and maybe mergets.pushRun(lo, runLen);ts.mergeCollapse();// Advance to find next runlo += runLen;nRemaining -= runLen;} while (nRemaining != 0);// Merge all remaining runs to complete sortassert lo == hi;ts.mergeForceCollapse();assert ts.stackSize == 1;}
If n < MIN_MERGE(32),返回n(数据长度)
Else if n 是2的倍数,返回MIN_MERGE(32)/2=16
Else 返回整数k,k取值范围MIN_MERGE/2(16) <= k <= MIN_MERGE(32),且such that n/k
is close to, but strictly less than, an exact power of 2.不知如何理解?
private static int minRunLength(int n) {assert n >= 0;int r = 0;while (n >= MIN_MERGE) {r |= (n & 1);n >>= 1;}return n + r;}
/*** 折半插入排序* 排序结果为升序,Comparator.compare(右, 左) >= 0* 例如:假设目标数组a长度为10,数组头3位已经排好升序,所以* lo = 0* hi = 9 + 1* start = 3 (0 1 2位已排序,从第3位开始计算)* @param a 目标数组* @param lo 指定排序范围首个元素位置* @param hi 指定排序范围最后元素位置 + 1* @param start 从start位置开始计算排序,即lo到start部分不排序*/private static <T> void binarySort(T[] a, int lo, int hi, int start,Comparator<? super T> c) {}
详细参考:插入排序分析与Java实现
计算目标数组指定范围中,连续升序或连续降序的元素组run(最少3个元素),并返回run长度,若连续降序run,则重置其中元素为升序(即a[lo] <= a[lo + 1] <= a[lo + 2] <=...);
注意:如果run为严格降序,即run中的前一元素大于后一元素(a[lo] > a[lo + 1] > a[lo + 2] > ...),可以元素翻转。严格降序为>,>=不是,如果在 >= 的情况下进行翻转这个算法就不再是stable。
private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,Comparator<? super T> c) {assert lo < hi;int runHi = lo + 1;if (runHi == hi)return 1;// 计算连续升序或降序的最后一位元素位置(runHi),降序则通过`reverseRange()`翻转元素为升序// 首先比较第0与第2位if (c.compare(a[runHi++], a[lo]) < 0) { // 降序// 再从第1与第2位的比较开始,依次比较n与n + 1位,直到比较为非降序while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)runHi++;// 翻转数组指定范围的元素,lo:位置,runHi:高位位置,即范围长度reverseRange(a, lo, runHi);} else { // 升序// 以上同理while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)runHi++;}return runHi - lo;}
lo:起始位置,从0起始
hi:指定范围长度
private static void reverseRange(Object[] a, int lo, int hi) {hi--;while (lo < hi) {Object t = a[lo];a[lo++] = a[hi];a[hi--] = t;}}
private void mergeLo(int base1, int len1, int base2, int len2) {assert len1 > 0 && len2 > 0 && base1 + len1 == base2;// Copy first run into temp arrayT[] a = this.a; // For performanceT[] tmp = ensureCapacity(len1);int cursor1 = tmpBase; // Indexes into tmp arrayint cursor2 = base2; // Indexes int aint dest = base1; // Indexes int aSystem.arraycopy(a, base1, tmp, cursor1, len1);// Move first element of second run and deal with degenerate casesa[dest++] = a[cursor2++];if (--len2 == 0) {System.arraycopy(tmp, cursor1, a, dest, len1);return;}if (len1 == 1) {System.arraycopy(a, cursor2, a, dest, len2);a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of mergereturn;}Comparator<? super T> c = this.c; // Use local variable for performanceint minGallop = this.minGallop; // " " " " "outer:while (true) {int count1 = 0; // run1操作次数int count2 = 0; // run2操作次数/** 【逐一比对】* run1(tmp)与run2(a第2段)根据升序逐一比较,当compare()<0时,写入到目标数组a* 当连续采用run1或run2的元素次数达到(等于)7次(minGallop),则采用方法* 例如:run1 = [1,6,7...] ; run2 = [2,4,8...]* 结果:* a = [1]* a = [1,2]* a = [1,2,4]* a = [1,2,4,6]* ...类推*/do {assert len1 > 1 && len2 > 0;if (c.compare(a[cursor2], tmp[cursor1]) < 0) {a[dest++] = a[cursor2++];count2++;count1 = 0;if (--len2 == 0)break outer;} else {a[dest++] = tmp[cursor1++];count1++;count2 = 0;if (--len1 == 1)break outer;}} while ((count1 | count2) < minGallop);/** One run is winning so consistently that galloping may be a* huge win. So try that, and continue galloping until (if ever)* neither run appears to be winning consistently anymore.*/do {assert len1 > 1 && len2 > 0;count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);if (count1 != 0) {System.arraycopy(tmp, cursor1, a, dest, count1);dest += count1;cursor1 += count1;len1 -= count1;if (len1 <= 1) // len1 == 1 || len1 == 0break outer;}a[dest++] = a[cursor2++];if (--len2 == 0)break outer;count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);if (count2 != 0) {System.arraycopy(a, cursor2, a, dest, count2);dest += count2;cursor2 += count2;len2 -= count2;if (len2 == 0)break outer;}a[dest++] = tmp[cursor1++];if (--len1 == 1)break outer;minGallop--;} while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);if (minGallop < 0)minGallop = 0;minGallop += 2; // Penalize for leaving gallop mode} // End of "outer" loopthis.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to fieldif (len1 == 1) {assert len2 > 0;System.arraycopy(a, cursor2, a, dest, len2);a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge} else if (len1 == 0) {throw new IllegalArgumentException("Comparison method violates its general contract!");} else {assert len2 == 0;assert len1 > 1;System.arraycopy(tmp, cursor1, a, dest, len1);}}