@superpigy
2025-09-09T09:15:32.000000Z
字数 67548
阅读 18
| Code | Message | Description |
|---|---|---|
| 400 | Bad Request | Invalid request parameters |
| 401 | Unauthorized | Unauthorized access |
| 403 | Forbidden | Access denied |
| 404 | Not Found | Resource not found |
| 500 | Internal Server Error | Server internal error |
| 1001 | Invalid Chunk ID | Invalid Chunk ID |
| 1002 | Chunk Update Failed | Chunk update failed |
POST /api/v1/chats_openai/{chat_id}/chat/completions
Creates a model response for a given chat conversation.
This API follows the same request and response format as OpenAI's API. It allows you to interact with the model in a manner similar to how you would with OpenAI's API.
/api/v1/chats_openai/{chat_id}/chat/completions'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"model": string"messages": object list"stream": boolean
curl --request POST \--url http://{address}/api/v1/chats_openai/{chat_id}/chat/completions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"model": "model","messages": [{"role": "user", "content": "Say this is a test!"}],"stream": true}'
model (Body parameter) string, Required
The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
messages (Body parameter) list[object], Required
A list of historical chat messages used to generate the response. This must contain at least one message with the user role.
stream (Body parameter) boolean
Whether to receive the response as a stream. Set this to false explicitly if you prefer to receive the entire response in one go instead of as a stream.
Stream:
{"id": "chatcmpl-3a9c3572f29311efa69751e139332ced","choices": [{"delta": {"content": "This is a test. If you have any specific questions or need information, feel","role": "assistant","function_call": null,"tool_calls": null},"finish_reason": null,"index": 0,"logprobs": null}],"created": 1740543996,"model": "model","object": "chat.completion.chunk","system_fingerprint": "","usage": null}// omit duplicated information{"choices":[{"delta":{"content":" free to ask, and I will do my best to provide an answer based on","role":"assistant"}}]}{"choices":[{"delta":{"content":" the knowledge I have. If your question is unrelated to the provided knowledge base,","role":"assistant"}}]}{"choices":[{"delta":{"content":" I will let you know.","role":"assistant"}}]}// the last chunk{"id": "chatcmpl-3a9c3572f29311efa69751e139332ced","choices": [{"delta": {"content": null,"role": "assistant","function_call": null,"tool_calls": null},"finish_reason": "stop","index": 0,"logprobs": null}],"created": 1740543996,"model": "model","object": "chat.completion.chunk","system_fingerprint": "","usage": {"prompt_tokens": 18,"completion_tokens": 225,"total_tokens": 243}}
Non-stream:
{"choices":[{"finish_reason":"stop","index":0,"logprobs":null,"message":{"content":"This is a test. If you have any specific questions or need information, feel free to ask, and I will do my best to provide an answer based on the knowledge I have. If your question is unrelated to the provided knowledge base, I will let you know.","role":"assistant"}}],"created":1740543499,"id":"chatcmpl-3a9c3572f29311efa69751e139332ced","model":"model","object":"chat.completion","usage":{"completion_tokens":246,"completion_tokens_details":{"accepted_prediction_tokens":246,"reasoning_tokens":18,"rejected_prediction_tokens":0},"prompt_tokens":18,"total_tokens":264}}
Failure:
{"code": 102,"message": "The last content of this conversation is not from user."}
POST /api/v1/agents_openai/{agent_id}/chat/completions
Creates a model response for a given chat conversation.
This API follows the same request and response format as OpenAI's API. It allows you to interact with the model in a manner similar to how you would with OpenAI's API.
/api/v1/agents_openai/{agent_id}/chat/completions'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"model": string"messages": object list"stream": boolean
curl --request POST \--url http://{address}/api/v1/agents_openai/{agent_id}/chat/completions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"model": "model","messages": [{"role": "user", "content": "Say this is a test!"}],"stream": true}'
model (Body parameter) string, Required
The model used to generate the response. The server will parse this automatically, so you can set it to any value for now.
messages (Body parameter) list[object], Required
A list of historical chat messages used to generate the response. This must contain at least one message with the user role.
stream (Body parameter) boolean
Whether to receive the response as a stream. Set this to false explicitly if you prefer to receive the entire response in one go instead of as a stream.
Stream:
{"id": "chatcmpl-3a9c3572f29311efa69751e139332ced","choices": [{"delta": {"content": "This is a test. If you have any specific questions or need information, feel","role": "assistant","function_call": null,"tool_calls": null},"finish_reason": null,"index": 0,"logprobs": null}],"created": 1740543996,"model": "model","object": "chat.completion.chunk","system_fingerprint": "","usage": null}// omit duplicated information{"choices":[{"delta":{"content":" free to ask, and I will do my best to provide an answer based on","role":"assistant"}}]}{"choices":[{"delta":{"content":" the knowledge I have. If your question is unrelated to the provided knowledge base,","role":"assistant"}}]}{"choices":[{"delta":{"content":" I will let you know.","role":"assistant"}}]}// the last chunk{"id": "chatcmpl-3a9c3572f29311efa69751e139332ced","choices": [{"delta": {"content": null,"role": "assistant","function_call": null,"tool_calls": null},"finish_reason": "stop","index": 0,"logprobs": null}],"created": 1740543996,"model": "model","object": "chat.completion.chunk","system_fingerprint": "","usage": {"prompt_tokens": 18,"completion_tokens": 225,"total_tokens": 243}}
Non-stream:
{"choices":[{"finish_reason":"stop","index":0,"logprobs":null,"message":{"content":"This is a test. If you have any specific questions or need information, feel free to ask, and I will do my best to provide an answer based on the knowledge I have. If your question is unrelated to the provided knowledge base, I will let you know.","role":"assistant"}}],"created":1740543499,"id":"chatcmpl-3a9c3572f29311efa69751e139332ced","model":"model","object":"chat.completion","usage":{"completion_tokens":246,"completion_tokens_details":{"accepted_prediction_tokens":246,"reasoning_tokens":18,"rejected_prediction_tokens":0},"prompt_tokens":18,"total_tokens":264}}
Failure:
{"code": 102,"message": "The last content of this conversation is not from user."}
POST /api/v1/datasets
Creates a dataset.
/api/v1/datasets'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"name": string"avatar": string"description": string"embedding_model": string"permission": string"chunk_method": string"pagerank": int"parser_config": object
curl --request POST \--url http://{address}/api/v1/datasets \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"name": "test_1"}'
"name": (Body parameter), string, Required
The unique name of the dataset to create. It must adhere to the following requirements:
"avatar": (Body parameter), string
Base64 encoding of the avatar.
"description": (Body parameter), string
A brief description of the dataset to create.
"embedding_model": (Body parameter), string
The name of the embedding model to use. For example: "BAAI/bge-large-zh-v1.5@BAAI"
model_name@model_factory format"permission": (Body parameter), string
Specifies who can access the dataset to create. Available options:
"me": (Default) Only you can manage the dataset."team": All team members can manage the dataset."pagerank": (Body parameter), int
refer to Set page rank
00100"chunk_method": (Body parameter), enum<string>
The chunking method of the dataset to create. Available options:
"naive": General (default)"book": Book"email": Email"laws": Laws"manual": Manual"one": One"paper": Paper"picture": Picture"presentation": Presentation"qa": Q&A"table": Table"tag": Tag"parser_config": (Body parameter), object
The configuration settings for the dataset parser. The attributes in this JSON object vary with the selected "chunk_method":
"chunk_method" is "naive", the "parser_config" object contains the following attributes:"auto_keywords": int 0032"auto_questions": int 0010"chunk_token_num": int 12812048"delimiter": string "\n"."html4excel": bool Indicates whether to convert Excel documents into HTML format. false"layout_recognize": string DeepDOC"tag_kb_ids": array<string> refer to Use tag set "task_page_size": int For PDF only. 121"raptor": object RAPTOR-specific settings. {"use_raptor": false}"graphrag": object GRAPHRAG-specific settings. {"use_graphrag": false}"chunk_method" is "qa", "manuel", "paper", "book", "laws", or "presentation", the "parser_config" object contains the following attribute: "raptor": object RAPTOR-specific settings. {"use_raptor": false}."chunk_method" is "table", "picture", "one", or "email", "parser_config" is an empty JSON object.Success:
{"code": 0,"data": {"avatar": null,"chunk_count": 0,"chunk_method": "naive","create_date": "Mon, 28 Apr 2025 18:40:41 GMT","create_time": 1745836841611,"created_by": "3af81804241d11f0a6a79f24fc270c7f","description": null,"document_count": 0,"embedding_model": "BAAI/bge-large-zh-v1.5@BAAI","id": "3b4de7d4241d11f0a6a79f24fc270c7f","language": "English","name": "RAGFlow example","pagerank": 0,"parser_config": {"chunk_token_num": 128,"delimiter": "\\n!?;。;!?","html4excel": false,"layout_recognize": "DeepDOC","raptor": {"use_raptor": false}},"permission": "me","similarity_threshold": 0.2,"status": "1","tenant_id": "3af81804241d11f0a6a79f24fc270c7f","token_num": 0,"update_date": "Mon, 28 Apr 2025 18:40:41 GMT","update_time": 1745836841611,"vector_similarity_weight": 0.3,},}
Failure:
{"code": 101,"message": "Dataset name 'RAGFlow example' already exists"}
DELETE /api/v1/datasets
Deletes datasets by ID.
/api/v1/datasets'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"ids": list[string] or null
curl --request DELETE \--url http://{address}/api/v1/datasets \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"ids": ["d94a8dc02c9711f0930f7fbc369eab6d", "e94a8dc02c9711f0930f7fbc369eab6e"]}'
"ids": (Body parameter), list[string] or null, Required null, all datasets will be deleted.Success:
{"code": 0}
Failure:
{"code": 102,"message": "You don't own the dataset."}
PUT /api/v1/datasets/{dataset_id}
Updates configurations for a specified dataset.
/api/v1/datasets/{dataset_id}'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"name": string"avatar": string"description": string"embedding_model": string"permission": string"chunk_method": string"pagerank": int"parser_config": object
curl --request PUT \--url http://{address}/api/v1/datasets/{dataset_id} \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"name": "updated_dataset"}'
dataset_id: (Path parameter) "name": (Body parameter), string "avatar": (Body parameter), string "embedding_model": (Body parameter), string "chunk_count" is 0 before updating "embedding_model".model_name@model_factory format"permission": (Body parameter), string "me": (Default) Only you can manage the dataset."team": All team members can manage the dataset."pagerank": (Body parameter), int 00100"chunk_method": (Body parameter), enum<string> "naive": General (default)"book": Book"email": Email"laws": Laws"manual": Manual"one": One"paper": Paper"picture": Picture"presentation": Presentation"qa": Q&A"table": Table"tag": Tag"parser_config": (Body parameter), object "chunk_method": "chunk_method" is "naive", the "parser_config" object contains the following attributes:"auto_keywords": int 0032"auto_questions": int 0010"chunk_token_num": int 12812048"delimiter": string "\n"."html4excel": bool Indicates whether to convert Excel documents into HTML format. false"layout_recognize": string DeepDOC"tag_kb_ids": array<string> refer to Use tag set "task_page_size": int For PDF only. 121"raptor": object RAPTOR-specific settings. {"use_raptor": false}"graphrag": object GRAPHRAG-specific settings. {"use_graphrag": false}"chunk_method" is "qa", "manuel", "paper", "book", "laws", or "presentation", the "parser_config" object contains the following attribute: "raptor": object RAPTOR-specific settings. {"use_raptor": false}."chunk_method" is "table", "picture", "one", or "email", "parser_config" is an empty JSON object.Success:
{"code": 0}
Failure:
{"code": 102,"message": "Can't change tenant_id."}
GET /api/v1/datasets?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id}
Lists datasets.
/api/v1/datasets?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id}'Authorization: Bearer <YOUR_API_KEY>'
curl --request GET \--url http://{address}/api/v1/datasets?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id} \--header 'Authorization: Bearer <YOUR_API_KEY>'
page: (Filter parameter) 1.page_size: (Filter parameter) 30.orderby: (Filter parameter) create_time (default)update_timedesc: (Filter parameter) true.name: (Filter parameter) id: (Filter parameter) Success:
{"code": 0,"data": [{"avatar": "","chunk_count": 59,"create_date": "Sat, 14 Sep 2024 01:12:37 GMT","create_time": 1726276357324,"created_by": "69736c5e723611efb51b0242ac120007","description": null,"document_count": 1,"embedding_model": "BAAI/bge-large-zh-v1.5","id": "6e211ee0723611efa10a0242ac120007","language": "English","name": "mysql","chunk_method": "naive","parser_config": {"chunk_token_num": 8192,"delimiter": "\\n","entity_types": ["organization","person","location","event","time"]},"permission": "me","similarity_threshold": 0.2,"status": "1","tenant_id": "69736c5e723611efb51b0242ac120007","token_num": 12744,"update_date": "Thu, 10 Oct 2024 04:07:23 GMT","update_time": 1728533243536,"vector_similarity_weight": 0.3}]}
Failure:
{"code": 102,"message": "The dataset doesn't exist"}
POST /api/v1/datasets/{dataset_id}/documents
Uploads documents to a specified dataset.
/api/v1/datasets/{dataset_id}/documents'Content-Type: multipart/form-data''Authorization: Bearer <YOUR_API_KEY>''file=@{FILE_PATH}'
curl --request POST \--url http://{address}/api/v1/datasets/{dataset_id}/documents \--header 'Content-Type: multipart/form-data' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--form 'file=@./test1.txt' \--form 'file=@./test2.pdf'
dataset_id: (Path parameter) 'file': (Body parameter) Success:
{"code": 0,"data": [{"chunk_method": "naive","created_by": "69736c5e723611efb51b0242ac120007","dataset_id": "527fa74891e811ef9c650242ac120006","id": "b330ec2e91ec11efbc510242ac120004","location": "1.txt","name": "1.txt","parser_config": {"chunk_token_num": 128,"delimiter": "\\n","html4excel": false,"layout_recognize": true,"raptor": {"use_raptor": false}},"run": "UNSTART","size": 17966,"thumbnail": "","type": "doc"}]}
Failure:
{"code": 101,"message": "No file part!"}
PUT /api/v1/datasets/{dataset_id}/documents/{document_id}
Updates configurations for a specified document.
/api/v1/datasets/{dataset_id}/documents/{document_id}'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"name":string"meta_fields":object"chunk_method":string"parser_config":object
curl --request PUT \--url http://{address}/api/v1/datasets/{dataset_id}/info/{document_id} \--header 'Authorization: Bearer <YOUR_API_KEY>' \--header 'Content-Type: application/json' \--data '{"name": "manual.txt","chunk_method": "manual","parser_config": {"chunk_token_count": 128}}'
dataset_id: (Path parameter) document_id: (Path parameter) "name": (Body parameter), string"meta_fields": (Body parameter), dict[str, Any] The meta fields of the document."chunk_method": (Body parameter), string "naive": General"manual: Manual"qa": Q&A"table": Table"paper": Paper"book": Book"laws": Laws"presentation": Presentation"picture": Picture"one": One"email": Email"parser_config": (Body parameter), object "chunk_method": "chunk_method" is "naive", the "parser_config" object contains the following attributes:"chunk_token_count": Defaults to 256."layout_recognize": Defaults to true."html4excel": Indicates whether to convert Excel documents into HTML format. Defaults to false."delimiter": Defaults to "\n"."task_page_size": Defaults to 12. For PDF only."raptor": RAPTOR-specific settings. Defaults to: {"use_raptor": false}."chunk_method" is "qa", "manuel", "paper", "book", "laws", or "presentation", the "parser_config" object contains the following attribute:"raptor": RAPTOR-specific settings. Defaults to: {"use_raptor": false}."chunk_method" is "table", "picture", "one", or "email", "parser_config" is an empty JSON object.Success:
{"code": 0}
Failure:
{"code": 102,"message": "The dataset does not have the document."}
GET /api/v1/datasets/{dataset_id}/documents/{document_id}
Downloads a document from a specified dataset.
/api/v1/datasets/{dataset_id}/documents/{document_id}'Authorization: Bearer <YOUR_API_KEY>''{PATH_TO_THE_FILE}'
curl --request GET \--url http://{address}/api/v1/datasets/{dataset_id}/documents/{document_id} \--header 'Authorization: Bearer <YOUR_API_KEY>' \--output ./ragflow.txt
dataset_id: (Path parameter) documents_id: (Path parameter) Success:
This is a test to verify the file download feature.
Failure:
{"code": 102,"message": "You do not own the dataset 7898da028a0511efbf750242ac1220005."}
GET /api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}
Lists documents in a specified dataset.
/api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name}'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'
curl --request GET \--url http://{address}/api/v1/datasets/{dataset_id}/documents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}&name={document_name} \--header 'Authorization: Bearer <YOUR_API_KEY>'
dataset_id: (Path parameter) keywords: (Filter parameter), string page: (Filter parameter), integer 1.page_size: (Filter parameter), integer 30.orderby: (Filter parameter), string create_time (default)update_timedesc: (Filter parameter), boolean true.id: (Filter parameter), string Success:
{"code": 0,"data": {"docs": [{"chunk_count": 0,"create_date": "Mon, 14 Oct 2024 09:11:01 GMT","create_time": 1728897061948,"created_by": "69736c5e723611efb51b0242ac120007","id": "3bcfbf8a8a0c11ef8aba0242ac120006","knowledgebase_id": "7898da028a0511efbf750242ac120005","location": "Test_2.txt","name": "Test_2.txt","parser_config": {"chunk_token_count": 128,"delimiter": "\n","layout_recognize": true,"task_page_size": 12},"chunk_method": "naive","process_begin_at": null,"process_duation": 0.0,"progress": 0.0,"progress_msg": "","run": "0","size": 7,"source_type": "local","status": "1","thumbnail": null,"token_count": 0,"type": "doc","update_date": "Mon, 14 Oct 2024 09:11:01 GMT","update_time": 1728897061948}],"total": 1}}
Failure:
{"code": 102,"message": "You don't own the dataset 7898da028a0511efbf750242ac1220005. "}
DELETE /api/v1/datasets/{dataset_id}/documents
Deletes documents by ID.
/api/v1/datasets/{dataset_id}/documents'Content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"ids": list[string]
curl --request DELETE \--url http://{address}/api/v1/datasets/{dataset_id}/documents \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"ids": ["id_1","id_2"]}'
dataset_id: (Path parameter) "ids": (Body parameter), list[string] Success:
{"code": 0}.
Failure:
{"code": 102,"message": "You do not own the dataset 7898da028a0511efbf750242ac1220005."}
POST /api/v1/datasets/{dataset_id}/chunks
Parses documents in a specified dataset.
/api/v1/datasets/{dataset_id}/chunks'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"document_ids": list[string]
curl --request POST \--url http://{address}/api/v1/datasets/{dataset_id}/chunks \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"document_ids": ["97a5f1c2759811efaa500242ac120004","97ad64b6759811ef9fc30242ac120004"]}'
dataset_id: (Path parameter) "document_ids": (Body parameter), list[string], Required Success:
{"code": 0}
Failure:
{"code": 102,"message": "`document_ids` is required"}
DELETE /api/v1/datasets/{dataset_id}/chunks
Stops parsing specified documents.
/api/v1/datasets/{dataset_id}/chunks'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"document_ids": list[string]
curl --request DELETE \--url http://{address}/api/v1/datasets/{dataset_id}/chunks \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"document_ids": ["97a5f1c2759811efaa500242ac120004","97ad64b6759811ef9fc30242ac120004"]}'
dataset_id: (Path parameter) "document_ids": (Body parameter), list[string], Required Success:
{"code": 0}
Failure:
{"code": 102,"message": "`document_ids` is required"}
POST /api/v1/datasets/{dataset_id}/documents/{document_id}/chunks
Adds a chunk to a specified document in a specified dataset.
/api/v1/datasets/{dataset_id}/documents/{document_id}/chunks'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"content": string"important_keywords": list[string]
curl --request POST \--url http://{address}/api/v1/datasets/{dataset_id}/documents/{document_id}/chunks \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"content": "<CHUNK_CONTENT_HERE>"}'
dataset_id: (Path parameter) document_ids: (Path parameter) "content": (Body parameter), string, Required "important_keywords(Body parameter), list[string] "questions"(Body parameter), list[string] Success:
{"code": 0,"data": {"chunk": {"content": "who are you","create_time": "2024-12-30 16:59:55","create_timestamp": 1735549195.969164,"dataset_id": "72f36e1ebdf411efb7250242ac120006","document_id": "61d68474be0111ef98dd0242ac120006","id": "12ccdc56e59837e5","important_keywords": [],"questions": []}}}
Failure:
{"code": 102,"message": "`content` is required"}
GET /api/v1/datasets/{dataset_id}/documents/{document_id}/chunks?keywords={keywords}&page={page}&page_size={page_size}&id={id}
Lists chunks in a specified document.
/api/v1/datasets/{dataset_id}/documents/{document_id}/chunks?keywords={keywords}&page={page}&page_size={page_size}&id={chunk_id}'Authorization: Bearer <YOUR_API_KEY>'
curl --request GET \--url http://{address}/api/v1/datasets/{dataset_id}/documents/{document_id}/chunks?keywords={keywords}&page={page}&page_size={page_size}&id={chunk_id} \--header 'Authorization: Bearer <YOUR_API_KEY>'
dataset_id: (Path parameter) document_id: (Path parameter) keywords(Filter parameter), string page(Filter parameter), integer 1.page_size(Filter parameter), integer 1024.id(Filter parameter), string Success:
{"code": 0,"data": {"chunks": [{"available": true,"content": "This is a test content.","docnm_kwd": "1.txt","document_id": "b330ec2e91ec11efbc510242ac120004","id": "b48c170e90f70af998485c1065490726","image_id": "","important_keywords": "","positions": [""]}],"doc": {"chunk_count": 1,"chunk_method": "naive","create_date": "Thu, 24 Oct 2024 09:45:27 GMT","create_time": 1729763127646,"created_by": "69736c5e723611efb51b0242ac120007","dataset_id": "527fa74891e811ef9c650242ac120006","id": "b330ec2e91ec11efbc510242ac120004","location": "1.txt","name": "1.txt","parser_config": {"chunk_token_num": 128,"delimiter": "\\n","html4excel": false,"layout_recognize": true,"raptor": {"use_raptor": false}},"process_begin_at": "Thu, 24 Oct 2024 09:56:44 GMT","process_duation": 0.54213,"progress": 0.0,"progress_msg": "Task dispatched...","run": "2","size": 17966,"source_type": "local","status": "1","thumbnail": "","token_count": 8,"type": "doc","update_date": "Thu, 24 Oct 2024 11:03:15 GMT","update_time": 1729767795721},"total": 1}}
Failure:
{"code": 102,"message": "You don't own the document 5c5999ec7be811ef9cab0242ac12000e5."}
DELETE /api/v1/datasets/{dataset_id}/documents/{document_id}/chunks
Deletes chunks by ID.
/api/v1/datasets/{dataset_id}/documents/{document_id}/chunks'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"chunk_ids": list[string]
curl --request DELETE \--url http://{address}/api/v1/datasets/{dataset_id}/documents/{document_id}/chunks \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"chunk_ids": ["test_1", "test_2"]}'
dataset_id: (Path parameter) document_ids: (Path parameter) "chunk_ids": (Body parameter), list[string] Success:
{"code": 0}
Failure:
{"code": 102,"message": "`chunk_ids` is required"}
PUT /api/v1/datasets/{dataset_id}/documents/{document_id}/chunks/{chunk_id}
Updates content or configurations for a specified chunk.
/api/v1/datasets/{dataset_id}/documents/{document_id}/chunks/{chunk_id}'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"content": string"important_keywords": list[string]"available": boolean
curl --request PUT \--url http://{address}/api/v1/datasets/{dataset_id}/documents/{document_id}/chunks/{chunk_id} \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"content": "ragflow123","important_keywords": []}'
dataset_id: (Path parameter) document_ids: (Path parameter) chunk_id: (Path parameter) "content": (Body parameter), string "important_keywords": (Body parameter), list[string] "available": (Body parameter) boolean true: Available (default)false: UnavailableSuccess:
{"code": 0}
Failure:
{"code": 102,"message": "Can't find this chunk 29a2d9987e16ba331fb4d7d30d99b71d2"}
POST /api/v1/retrieval
Retrieves chunks from specified datasets.
/api/v1/retrieval'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"question": string "dataset_ids": list[string] "document_ids": list[string]"page": integer "page_size": integer "similarity_threshold": float "vector_similarity_weight": float "top_k": integer "rerank_id": string "keyword": boolean "highlight": boolean
curl --request POST \--url http://{address}/api/v1/retrieval \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"question": "What is advantage of ragflow?","dataset_ids": ["b2a62730759d11ef987d0242ac120004"],"document_ids": ["77df9ef4759a11ef8bdd0242ac120004"]}'
"question": (Body parameter), string, Required "dataset_ids": (Body parameter) list[string] "document_ids"."document_ids": (Body parameter), list[string] "dataset_ids"."page": (Body parameter), integer 1."page_size": (Body parameter) 30."similarity_threshold": (Body parameter) 0.2."vector_similarity_weight": (Body parameter), float 0.3. If x represents the weight of vector cosine similarity, then (1 - x) is the term similarity weight."top_k": (Body parameter), integer 1024."rerank_id": (Body parameter), integer "keyword": (Body parameter), boolean true: Enable keyword-based matching.false: Disable keyword-based matching (default)."highlight": (Body parameter), boolean true: Enable highlighting of matched terms.false: Disable highlighting of matched terms (default).Success:
{"code": 0,"data": {"chunks": [{"content": "ragflow content","content_ltks": "ragflow content","document_id": "5c5999ec7be811ef9cab0242ac120005","document_keyword": "1.txt","highlight": "<em>ragflow</em> content","id": "d78435d142bd5cf6704da62c778795c5","image_id": "","important_keywords": [""],"kb_id": "c7ee74067a2c11efb21c0242ac120006","positions": [""],"similarity": 0.9669436601210759,"term_similarity": 1.0,"vector_similarity": 0.8898122004035864}],"doc_aggs": [{"count": 1,"doc_id": "5c5999ec7be811ef9cab0242ac120005","doc_name": "1.txt"}],"total": 1}}
Failure:
{"code": 102,"message": "`datasets` is required."}
POST /api/v1/chats
Creates a chat assistant.
/api/v1/chats'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"name": string"avatar": string"dataset_ids": list[string]"llm": object"prompt": object
curl --request POST \--url http://{address}/api/v1/chats \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"dataset_ids": ["0b2cbc8c877f11ef89070242ac120005"],"name":"new_chat_1"}'
"name": (Body parameter), string, Required "avatar": (Body parameter), string "dataset_ids": (Body parameter), list[string] "llm": (Body parameter), object llm JSON object contains the following attributes: "model_name", string "temperature": float 0.1. "top_p": float 0.3 "presence_penalty": float 0.4."frequency penalty": float 0.7."prompt": (Body parameter), object prompt JSON object contains the following attributes: "similarity_threshold": float RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is 0.2."keywords_similarity_weight": float This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is 0.7."top_n": int This argument specifies the number of top chunks with similarity scores above the similarity_threshold that are fed to the LLM. The LLM will only access these 'top N' chunks. The default value is 6."variables": object[] This argument lists the variables to use in the 'System' field of Chat Configurations. Note that: "knowledge" is a reserved variable, which represents the retrieved chunks.[{"key": "knowledge", "optional": true}]."rerank_model": string If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used.top_k: int Refers to the process of reordering or selecting the top-k items from a list or set based on a specific ranking criterion. Default to 1024."empty_response": string If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank."opener": string The opening greeting for the user. Defaults to "Hi! I am your assistant, can I help you?"."show_quote: boolean Indicates whether the source of text should be displayed. Defaults to true."prompt": string The prompt content.Success:
{"code": 0,"data": {"avatar": "","create_date": "Thu, 24 Oct 2024 11:18:29 GMT","create_time": 1729768709023,"dataset_ids": ["527fa74891e811ef9c650242ac120006"],"description": "A helpful Assistant","do_refer": "1","id": "b1f2f15691f911ef81180242ac120003","language": "English","llm": {"frequency_penalty": 0.7,"model_name": "qwen-plus@Tongyi-Qianwen","presence_penalty": 0.4,"temperature": 0.1,"top_p": 0.3},"name": "12234","prompt": {"empty_response": "Sorry! No relevant content was found in the knowledge base!","keywords_similarity_weight": 0.3,"opener": "Hi! I'm your assistant, what can I do for you?","prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n ","rerank_model": "","similarity_threshold": 0.2,"top_n": 6,"variables": [{"key": "knowledge","optional": false}]},"prompt_type": "simple","status": "1","tenant_id": "69736c5e723611efb51b0242ac120007","top_k": 1024,"update_date": "Thu, 24 Oct 2024 11:18:29 GMT","update_time": 1729768709023}}
Failure:
{"code": 102,"message": "Duplicated chat name in creating dataset."}
PUT /api/v1/chats/{chat_id}
Updates configurations for a specified chat assistant.
/api/v1/chats/{chat_id}'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"name": string"avatar": string"dataset_ids": list[string]"llm": object"prompt": object
curl --request PUT \--url http://{address}/api/v1/chats/{chat_id} \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"name":"Test"}'
chat_id: (Path parameter) "name": (Body parameter), string, Required "avatar": (Body parameter), string "dataset_ids": (Body parameter), list[string] "llm": (Body parameter), object llm object contains the following attributes: "model_name", string "temperature": float 0.1. "top_p": float 0.3 "presence_penalty": float 0.2."frequency penalty": float 0.7."prompt": (Body parameter), object prompt object contains the following attributes: "similarity_threshold": float RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted rerank score during retrieval. This argument sets the threshold for similarities between the user query and chunks. If a similarity score falls below this threshold, the corresponding chunk will be excluded from the results. The default value is 0.2."keywords_similarity_weight": float This argument sets the weight of keyword similarity in the hybrid similarity score with vector cosine similarity or reranking model similarity. By adjusting this weight, you can control the influence of keyword similarity in relation to other similarity measures. The default value is 0.7."top_n": int This argument specifies the number of top chunks with similarity scores above the similarity_threshold that are fed to the LLM. The LLM will only access these 'top N' chunks. The default value is 8."variables": object[] This argument lists the variables to use in the 'System' field of Chat Configurations. Note that: "knowledge" is a reserved variable, which represents the retrieved chunks.[{"key": "knowledge", "optional": true}]"rerank_model": string If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used."empty_response": string If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is found, leave this blank."opener": string The opening greeting for the user. Defaults to "Hi! I am your assistant, can I help you?"."show_quote: boolean Indicates whether the source of text should be displayed. Defaults to true."prompt": string The prompt content.Success:
{"code": 0}
Failure:
{"code": 102,"message": "Duplicated chat name in updating dataset."}
DELETE /api/v1/chats
Deletes chat assistants by ID.
/api/v1/chats'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"ids": list[string]
curl --request DELETE \--url http://{address}/api/v1/chats \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"ids": ["test_1", "test_2"]}'
"ids": (Body parameter), list[string] Success:
{"code": 0}
Failure:
{"code": 102,"message": "ids are required"}
GET /api/v1/chats?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={chat_name}&id={chat_id}
Lists chat assistants.
/api/v1/chats?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={chat_name}&id={chat_id}'Authorization: Bearer <YOUR_API_KEY>'
curl --request GET \--url http://{address}/api/v1/chats?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={chat_name}&id={chat_id} \--header 'Authorization: Bearer <YOUR_API_KEY>'
page: (Filter parameter), integer 1.page_size: (Filter parameter), integer 30.orderby: (Filter parameter), string create_time (default)update_timedesc: (Filter parameter), boolean true.id: (Filter parameter), string name: (Filter parameter), string Success:
{"code": 0,"data": [{"avatar": "","create_date": "Fri, 18 Oct 2024 06:20:06 GMT","create_time": 1729232406637,"description": "A helpful Assistant","do_refer": "1","id": "04d0d8e28d1911efa3630242ac120006","dataset_ids": ["527fa74891e811ef9c650242ac120006"],"language": "English","llm": {"frequency_penalty": 0.7,"model_name": "qwen-plus@Tongyi-Qianwen","presence_penalty": 0.4,"temperature": 0.1,"top_p": 0.3},"name": "13243","prompt": {"empty_response": "Sorry! No relevant content was found in the knowledge base!","keywords_similarity_weight": 0.3,"opener": "Hi! I'm your assistant, what can I do for you?","prompt": "You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\n","rerank_model": "","similarity_threshold": 0.2,"top_n": 6,"variables": [{"key": "knowledge","optional": false}]},"prompt_type": "simple","status": "1","tenant_id": "69736c5e723611efb51b0242ac120007","top_k": 1024,"update_date": "Fri, 18 Oct 2024 06:20:06 GMT","update_time": 1729232406638}]}
Failure:
{"code": 102,"message": "The chat doesn't exist"}
POST /api/v1/chats/{chat_id}/sessions
Creates a session with a chat assistant.
/api/v1/chats/{chat_id}/sessions'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"name": string"user_id": string (optional)
curl --request POST \--url http://{address}/api/v1/chats/{chat_id}/sessions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"name": "new session"}'
chat_id: (Path parameter) "name": (Body parameter), string "user_id": (Body parameter), string Success:
{"code": 0,"data": {"chat_id": "2ca4b22e878011ef88fe0242ac120005","create_date": "Fri, 11 Oct 2024 08:46:14 GMT","create_time": 1728636374571,"id": "4606b4ec87ad11efbc4f0242ac120006","messages": [{"content": "Hi! I am your assistant,can I help you?","role": "assistant"}],"name": "new session","update_date": "Fri, 11 Oct 2024 08:46:14 GMT","update_time": 1728636374571}}
Failure:
{"code": 102,"message": "Name cannot be empty."}
PUT /api/v1/chats/{chat_id}/sessions/{session_id}
Updates a session of a specified chat assistant.
/api/v1/chats/{chat_id}/sessions/{session_id}'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"name: string"user_id: string (optional)
curl --request PUT \--url http://{address}/api/v1/chats/{chat_id}/sessions/{session_id} \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"name": "<REVISED_SESSION_NAME_HERE>"}'
chat_id: (Path parameter) session_id: (Path parameter) "name": (Body Parameter), string "user_id": (Body parameter), string Success:
{"code": 0}
Failure:
{"code": 102,"message": "Name cannot be empty."}
GET /api/v1/chats/{chat_id}/sessions?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={session_name}&id={session_id}
Lists sessions associated with a specified chat assistant.
/api/v1/chats/{chat_id}/sessions?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={session_name}&id={session_id}&user_id={user_id}'Authorization: Bearer <YOUR_API_KEY>'
curl --request GET \--url http://{address}/api/v1/chats/{chat_id}/sessions?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={session_name}&id={session_id} \--header 'Authorization: Bearer <YOUR_API_KEY>'
chat_id: (Path parameter) page: (Filter parameter), integer 1.page_size: (Filter parameter), integer 30.orderby: (Filter parameter), string create_time (default)update_timedesc: (Filter parameter), boolean true.name: (Filter parameter) string id: (Filter parameter), string user_id: (Filter parameter), string Success:
{"code": 0,"data": [{"chat": "2ca4b22e878011ef88fe0242ac120005","create_date": "Fri, 11 Oct 2024 08:46:43 GMT","create_time": 1728636403974,"id": "578d541e87ad11ef96b90242ac120006","messages": [{"content": "Hi! I am your assistant,can I help you?","role": "assistant"}],"name": "new session","update_date": "Fri, 11 Oct 2024 08:46:43 GMT","update_time": 1728636403974}]}
Failure:
{"code": 102,"message": "The session doesn't exist"}
DELETE /api/v1/chats/{chat_id}/sessions
Deletes sessions of a chat assistant by ID.
/api/v1/chats/{chat_id}/sessions'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"ids": list[string]
curl --request DELETE \--url http://{address}/api/v1/chats/{chat_id}/sessions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"ids": ["test_1", "test_2"]}'
chat_id: (Path parameter) "ids": (Body Parameter), list[string] Success:
{"code": 0}
Failure:
{"code": 102,"message": "The chat doesn't own the session"}
POST /api/v1/chats/{chat_id}/completions
Asks a specified chat assistant a question to start an AI-powered conversation.
:::tip NOTE
In streaming mode, the last message is an empty message:
data:{"code": 0,"data": true}
:::
/api/v1/chats/{chat_id}/completions'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"question": string"stream": boolean"session_id": string (optional)"user_id: string (optional)
curl --request POST \--url http://{address}/api/v1/chats/{chat_id}/completions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data-binary '{}'
curl --request POST \--url http://{address}/api/v1/chats/{chat_id}/completions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data-binary '{"question": "Who are you","stream": true,"session_id":"9fa7691cb85c11ef9c5f0242ac120005"}'
chat_id: (Path parameter) "question": (Body Parameter), string, Required "stream": (Body Parameter), boolean true: Enable streaming (default).false: Disable streaming."session_id": (Body Parameter) "user_id": (Body parameter), string session_id is provided.Success without session_id:
data:{"code": 0,"message": "","data": {"answer": "Hi! I'm your assistant, what can I do for you?","reference": {},"audio_binary": null,"id": null,"session_id": "b01eed84b85611efa0e90242ac120005"}}data:{"code": 0,"message": "","data": true}
Success with session_id:
data:{"code": 0,"data": {"answer": "I am an intelligent assistant designed to help answer questions by summarizing content from a","reference": {},"audio_binary": null,"id": "a84c5dd4-97b4-4624-8c3b-974012c8000d","session_id": "82b0ab2a9c1911ef9d870242ac120006"}}data:{"code": 0,"data": {"answer": "I am an intelligent assistant designed to help answer questions by summarizing content from a knowledge base. My responses are based on the information available in the knowledge base and","reference": {},"audio_binary": null,"id": "a84c5dd4-97b4-4624-8c3b-974012c8000d","session_id": "82b0ab2a9c1911ef9d870242ac120006"}}data:{"code": 0,"data": {"answer": "I am an intelligent assistant designed to help answer questions by summarizing content from a knowledge base. My responses are based on the information available in the knowledge base and any relevant chat history.","reference": {},"audio_binary": null,"id": "a84c5dd4-97b4-4624-8c3b-974012c8000d","session_id": "82b0ab2a9c1911ef9d870242ac120006"}}data:{"code": 0,"data": {"answer": "I am an intelligent assistant designed to help answer questions by summarizing content from a knowledge base ##0$$. My responses are based on the information available in the knowledge base and any relevant chat history.","reference": {"total": 1,"chunks": [{"id": "faf26c791128f2d5e821f822671063bd","content": "xxxxxxxx","document_id": "dd58f58e888511ef89c90242ac120006","document_name": "1.txt","dataset_id": "8e83e57a884611ef9d760242ac120006","image_id": "","similarity": 0.7,"vector_similarity": 0.0,"term_similarity": 1.0,"positions": [""]}],"doc_aggs": [{"doc_name": "1.txt","doc_id": "dd58f58e888511ef89c90242ac120006","count": 1}]},"prompt": "xxxxxxxxxxx","id": "a84c5dd4-97b4-4624-8c3b-974012c8000d","session_id": "82b0ab2a9c1911ef9d870242ac120006"}}data:{"code": 0,"data": true}
Failure:
{"code": 102,"message": "Please input your question."}
POST /api/v1/agents/{agent_id}/sessions
Creates a session with an agent.
/api/v1/agents/{agent_id}/sessions?user_id={user_id}'content-Type: application/json' or 'multipart/form-data''Authorization: Bearer <YOUR_API_KEY>'strIf the Begin component in your agent does not take required parameters:
curl --request POST \--url http://{address}/api/v1/agents/{agent_id}/sessions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{}'
If the Begin component in your agent takes required parameters:
curl --request POST \--url http://{address}/api/v1/agents/{agent_id}/sessions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"lang":"Japanese","file":"Who are you"}'
If the Begin component in your agent takes required file parameters:
curl --request POST \--url http://{address}/api/v1/agents/{agent_id}/sessions?user_id={user_id} \--header 'Content-Type: multipart/form-data' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--form '<FILE_KEY>=@./test1.png'
agent_id: (Path parameter) user_id: (Filter parameter) Success:
{"code": 0,"data": {"agent_id": "b4a39922b76611efaa1a0242ac120006","dsl": {"answer": [],"components": {"Answer:GreenReadersDrum": {"downstream": [],"obj": {"component_name": "Answer","inputs": [],"output": null,"params": {}},"upstream": []},"begin": {"downstream": [],"obj": {"component_name": "Begin","inputs": [],"output": {},"params": {}},"upstream": []}},"embed_id": "","graph": {"edges": [],"nodes": [{"data": {"label": "Begin","name": "begin"},"dragging": false,"height": 44,"id": "begin","position": {"x": 53.25688640427177,"y": 198.37155679786412},"positionAbsolute": {"x": 53.25688640427177,"y": 198.37155679786412},"selected": false,"sourcePosition": "left","targetPosition": "right","type": "beginNode","width": 200},{"data": {"form": {},"label": "Answer","name": "dialog_0"},"dragging": false,"height": 44,"id": "Answer:GreenReadersDrum","position": {"x": 360.43473114516974,"y": 207.29298425089348},"positionAbsolute": {"x": 360.43473114516974,"y": 207.29298425089348},"selected": false,"sourcePosition": "right","targetPosition": "left","type": "logicNode","width": 200}]},"history": [],"messages": [],"path": [["begin"],[]],"reference": []},"id": "2581031eb7a311efb5200242ac120005","message": [{"content": "Hi! I'm your smart assistant. What can I do for you?","role": "assistant"}],"source": "agent","user_id": "69736c5e723611efb51b0242ac120007"}}
Failure:
{"code": 102,"message": "Agent not found."}
POST /api/v1/agents/{agent_id}/completions
Asks a specified agent a question to start an AI-powered conversation.
:::tip NOTE
In streaming mode, the last message is an empty message:
data:{"code": 0,"data": true}
:::
/api/v1/agents/{agent_id}/completions'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"question": string"stream": boolean"session_id": string"user_id": string(optional)"sync_dsl": boolean (optional)string:::info IMPORTANT
You can include custom parameters in the request body, but first ensure they are defined in the Begin agent component.
:::
curl --request POST \--url http://{address}/api/v1/agents/{agent_id}/completions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data-binary '{}'
curl --request POST \--url http://{address}/api/v1/agents/{agent_id}/completions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data-binary '{"lang":"English","file":"How is the weather tomorrow?"}'
The following code will execute the completion process
curl --request POST \--url http://{address}/api/v1/agents/{agent_id}/completions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data-binary '{"question": "Hello","stream": true,"session_id": "cb2f385cb86211efa36e0242ac120005"}'
agent_id: (Path parameter), string "question": (Body Parameter), string, Required "stream": (Body Parameter), boolean true: Enable streaming (default).false: Disable streaming."session_id": (Body Parameter) "user_id": (Body parameter), string session_id is provided."sync_dsl": (Body parameter), boolean false.success without session_id provided and with no parameters specified in the Begin component:
data:{"code": 0,"message": "","data": {"answer": "Hi! I'm your smart assistant. What can I do for you?","reference": {},"id": "31e6091d-88d4-441b-ac65-eae1c055be7b","session_id": "2987ad3eb85f11efb2a70242ac120005"}}data:{"code": 0,"message": "","data": true}
Success without session_id provided and with parameters specified in the Begin component:
data:{"code": 0,"message": "","data": {"session_id": "eacb36a0bdff11ef97120242ac120006","answer": "","reference": [],"param": [{"key": "lang","name": "Target Language","optional": false,"type": "line","value": "English"},{"key": "file","name": "Files","optional": false,"type": "file","value": "How is the weather tomorrow?"},{"key": "hhyt","name": "hhty","optional": true,"type": "line"}]}}data:
Success with parameters specified in the Begin component:
data:{"code": 0,"message": "","data": {"answer": "How","reference": {},"id": "0379ac4c-b26b-4a44-8b77-99cebf313fdf","session_id": "4399c7d0b86311efac5b0242ac120005"}}data:{"code": 0,"message": "","data": {"answer": "How is","reference": {},"id": "0379ac4c-b26b-4a44-8b77-99cebf313fdf","session_id": "4399c7d0b86311efac5b0242ac120005"}}data:{"code": 0,"message": "","data": {"answer": "How is the","reference": {},"id": "0379ac4c-b26b-4a44-8b77-99cebf313fdf","session_id": "4399c7d0b86311efac5b0242ac120005"}}data:{"code": 0,"message": "","data": {"answer": "How is the weather","reference": {},"id": "0379ac4c-b26b-4a44-8b77-99cebf313fdf","session_id": "4399c7d0b86311efac5b0242ac120005"}}data:{"code": 0,"message": "","data": {"answer": "How is the weather tomorrow","reference": {},"id": "0379ac4c-b26b-4a44-8b77-99cebf313fdf","session_id": "4399c7d0b86311efac5b0242ac120005"}}data:{"code": 0,"message": "","data": {"answer": "How is the weather tomorrow?","reference": {},"id": "0379ac4c-b26b-4a44-8b77-99cebf313fdf","session_id": "4399c7d0b86311efac5b0242ac120005"}}data:{"code": 0,"message": "","data": {"answer": "How is the weather tomorrow?","reference": {},"id": "0379ac4c-b26b-4a44-8b77-99cebf313fdf","session_id": "4399c7d0b86311efac5b0242ac120005"}}data:{"code": 0,"message": "","data": true}
Failure:
{"code": 102,"message": "`question` is required."}
GET /api/v1/agents/{agent_id}/sessions?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&id={session_id}&user_id={user_id}&dsl={dsl}
Lists sessions associated with a specified agent.
/api/v1/agents/{agent_id}/sessions?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&id={session_id}'Authorization: Bearer <YOUR_API_KEY>'
curl --request GET \--url http://{address}/api/v1/agents/{agent_id}/sessions?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&id={session_id}&user_id={user_id} \--header 'Authorization: Bearer <YOUR_API_KEY>'
agent_id: (Path parameter) page: (Filter parameter), integer 1.page_size: (Filter parameter), integer 30.orderby: (Filter parameter), string create_time (default)update_timedesc: (Filter parameter), boolean true.id: (Filter parameter), string user_id: (Filter parameter), string dsl: (Filter parameter), boolean true.Success:
{"code": 0,"data": [{"agent_id": "e9e2b9c2b2f911ef801d0242ac120006","dsl": {"answer": [],"components": {"Answer:OrangeTermsBurn": {"downstream": [],"obj": {"component_name": "Answer","params": {}},"upstream": []},"Generate:SocialYearsRemain": {"downstream": [],"obj": {"component_name": "Generate","params": {"cite": true,"frequency_penalty": 0.7,"llm_id": "gpt-4o___OpenAI-API@OpenAI-API-Compatible","message_history_window_size": 12,"parameters": [],"presence_penalty": 0.4,"prompt": "Please summarize the following paragraph. Pay attention to the numbers and do not make things up. The paragraph is as follows:\n{input}\nThis is what you need to summarize.","temperature": 0.1,"top_p": 0.3}},"upstream": []},"begin": {"downstream": [],"obj": {"component_name": "Begin","params": {}},"upstream": []}},"graph": {"edges": [],"nodes": [{"data": {"label": "Begin","name": "begin"},"height": 44,"id": "begin","position": {"x": 50,"y": 200},"sourcePosition": "left","targetPosition": "right","type": "beginNode","width": 200},{"data": {"form": {"cite": true,"frequencyPenaltyEnabled": true,"frequency_penalty": 0.7,"llm_id": "gpt-4o___OpenAI-API@OpenAI-API-Compatible","maxTokensEnabled": true,"message_history_window_size": 12,"parameters": [],"presencePenaltyEnabled": true,"presence_penalty": 0.4,"prompt": "Please summarize the following paragraph. Pay attention to the numbers and do not make things up. The paragraph is as follows:\n{input}\nThis is what you need to summarize.","temperature": 0.1,"temperatureEnabled": true,"topPEnabled": true,"top_p": 0.3},"label": "Generate","name": "Generate Answer_0"},"dragging": false,"height": 105,"id": "Generate:SocialYearsRemain","position": {"x": 561.3457829707513,"y": 178.7211182312641},"positionAbsolute": {"x": 561.3457829707513,"y": 178.7211182312641},"selected": true,"sourcePosition": "right","targetPosition": "left","type": "generateNode","width": 200},{"data": {"form": {},"label": "Answer","name": "Dialogue_0"},"height": 44,"id": "Answer:OrangeTermsBurn","position": {"x": 317.2368194777658,"y": 218.30635555445093},"sourcePosition": "right","targetPosition": "left","type": "logicNode","width": 200}]},"history": [],"messages": [],"path": [],"reference": []},"id": "792dde22b2fa11ef97550242ac120006","message": [{"content": "Hi! I'm your smart assistant. What can I do for you?","role": "assistant"}],"source": "agent","user_id": ""}]}
Failure:
{"code": 102,"message": "You don't own the agent ccd2f856b12311ef94ca0242ac1200052."}
DELETE /api/v1/agents/{agent_id}/sessions
Deletes sessions of a agent by ID.
/api/v1/agents/{agent_id}/sessions'content-Type: application/json''Authorization: Bearer <YOUR_API_KEY>'"ids": list[string]
curl --request DELETE \--url http://{address}/api/v1/agents/{agent_id}/sessions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"ids": ["test_1", "test_2"]}'
agent_id: (Path parameter) "ids": (Body Parameter), list[string] Success:
{"code": 0}
Failure:
{"code": 102,"message": "The agent doesn't own the session cbd31e52f73911ef93b232903b842af6"}
POST /v1/conversation/related_questions
Generates five to ten alternative question strings from the user's original query to retrieve more relevant search results.
This operation requires a Bearer Login Token, typically expires with in 24 hours. You can find the it in the browser request easily.
:::tip NOTE
The chat model dynamically determines the number of questions to generate based on the instruction, typically between five and ten.
:::
/v1/conversation/related_questions'content-Type: application/json''Authorization: Bearer <YOUR_LOGIN_TOKEN>'"question": string
curl --request POST \--url http://{address}/v1/conversation/related_questions \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_LOGIN_TOKEN>' \--data '{"question": "What are the key advantages of Neovim over Vim?"}'
"question": (Body Parameter), string Success:
{"code": 0,"data": ["What makes Neovim superior to Vim in terms of features?","How do the benefits of Neovim compare to those of Vim?","What advantages does Neovim offer that are not present in Vim?","In what ways does Neovim outperform Vim in functionality?","What are the most significant improvements in Neovim compared to Vim?","What unique advantages does Neovim bring to the table over Vim?","How does the user experience in Neovim differ from Vim in terms of benefits?","What are the top reasons to switch from Vim to Neovim?","What features of Neovim are considered more advanced than those in Vim?"],"message": "success"}
Failure:
{"code": 401,"data": null,"message": "<Unauthorized '401: Unauthorized'>"}
GET /api/v1/agents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={agent_name}&id={agent_id}
Lists agents.
/api/v1/agents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={agent_name}&id={agent_id}'Authorization: Bearer <YOUR_API_KEY>'
curl --request GET \--url http://{address}/api/v1/agents?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={agent_name}&id={agent_id} \--header 'Authorization: Bearer <YOUR_API_KEY>'
page: (Filter parameter), integer 1.page_size: (Filter parameter), integer 30.orderby: (Filter parameter), string create_time (default)update_timedesc: (Filter parameter), boolean true.id: (Filter parameter), string name: (Filter parameter), string Success:
{"code": 0,"data": [{"avatar": null,"canvas_type": null,"create_date": "Thu, 05 Dec 2024 19:10:36 GMT","create_time": 1733397036424,"description": null,"dsl": {"answer": [],"components": {"begin": {"downstream": [],"obj": {"component_name": "Begin","params": {}},"upstream": []}},"graph": {"edges": [],"nodes": [{"data": {"label": "Begin","name": "begin"},"height": 44,"id": "begin","position": {"x": 50,"y": 200},"sourcePosition": "left","targetPosition": "right","type": "beginNode","width": 200}]},"history": [],"messages": [],"path": [],"reference": []},"id": "8d9ca0e2b2f911ef9ca20242ac120006","title": "123465","update_date": "Thu, 05 Dec 2024 19:10:56 GMT","update_time": 1733397056801,"user_id": "69736c5e723611efb51b0242ac120007"}]}
Failure:
{"code": 102,"message": "The agent doesn't exist."}
POST /api/v1/agents
Create an agent.
/api/v1/agents'Content-Type: application/json'Authorization: Bearer <YOUR_API_KEY>'"title": string"description": string"dsl": object
curl --request POST \--url http://{address}/api/v1/agents \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"title": "Test Agent","description": "A test agent","dsl": {// ... Canvas DSL here ...}}'
title: (Body parameter), string, Required description: (Body parameter), string None.dsl: (Body parameter), object, Required Success:
{"code": 0,"data": true,"message": "success"}
Failure:
{"code": 102,"message": "Agent with title test already exists."}
PUT /api/v1/agents/{agent_id}
Update an agent by id.
/api/v1/agents/{agent_id}'Content-Type: application/json'Authorization: Bearer <YOUR_API_KEY>'"title": string"description": string"dsl": object
curl --request PUT \--url http://{address}/api/v1/agents/58af890a2a8911f0a71a11b922ed82d6 \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{"title": "Test Agent","description": "A test agent","dsl": {// ... Canvas DSL here ...}}'
agent_id: (Path parameter), string title: (Body parameter), string description: (Body parameter), string dsl: (Body parameter), object Only specify the parameter you want to change in the request body. If a parameter does not exist or is None, it won't be updated.
Success:
{"code": 0,"data": true,"message": "success"}
Failure:
{"code": 103,"message": "Only owner of canvas authorized for this operation."}
DELETE /api/v1/agents/{agent_id}
Delete an agent by id.
/api/v1/agents/{agent_id}'Content-Type: application/json'Authorization: Bearer <YOUR_API_KEY>'
curl --request DELETE \--url http://{address}/api/v1/agents/58af890a2a8911f0a71a11b922ed82d6 \--header 'Content-Type: application/json' \--header 'Authorization: Bearer <YOUR_API_KEY>' \--data '{}'
agent_id: (Path parameter), string Success:
{"code": 0,"data": true,"message": "success"}
Failure:
{"code": 103,"message": "Only owner of canvas authorized for this operation."}